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CHAPTER

ONE

ABOUT

1.1 Overview

Lecture2Notes is a project that summarizes lectures videos. At a high level, it parses both the visual and auditory
components of the video, extracts text from each, combines them, and then summarizes the combined text using au-
tomatic summarization algorithms. These pages document the code for the entirety of “Lecture2Notes: Summarizing
Lecture Videos by Classifying Slides and Analyzing Text using Machine Learning.”

To get started, visit the tutorial.

The project is broken into four main components: the slide classifier (including the dataset), the summarization models
(neural, non-neural, extractive, and abstractive), the end-to-end-process (one command to convert to notes), and finally
the website that enables users to process their own videos.

Process:

1. Extract frames from video file

2. Classify extracted frames to find frames containing slides

3. Perspective crop images containing the presenter and slide to contain only the slide by matching temporal
features

4. Cluster slides to group transitions and remove duplicates

5. Run a Slide Structure Analysis (SSA) using OCR on the slide frames to obtain a formatted transcript of the
text on the slides

6. Detect and extract figures from the set of unique slide frames

7. Transcribe the lecture using a speech-to-text algorithm

8. Summarize the visual and auditory transcripts

1. Combine

2. Run some modifications (such as only using complete sentences)

3. Extractive summarization

4. Abstractive summarization

9. Convert intermediate outputs to a final notes file (HTML, TXT, markdown, etc.)

The summarization steps can be toggled off and on (see Combination and Summarization).

Note: Notice an issue with this documentation? A typo? Missing or incorrect information? Please open an issue on
GitHub or click “Edit on GitHub” in the top right corner of the page with issues. Documentation is almost as important
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as code (what’s the point of having code that can’t be understood). Please report problems you find (even if its one
letter). Thanks.

Abstract: Note-taking is a universal activity among students because of its benefits to the learning process. This re-
search focuses on end-to-end generation of formatted summaries of lecture videos. Our automated multimodal approach
will decrease the time required to create notes, increase quiz scores and content knowledge, and enable faster learning
through enhanced previewing. The project is broken into three main components: the slide classifier, summarization
models, and end-to-end-process. The system beings by extracting important keyframes using the slide classifier, a deep
CNN. Then, unique slides are determined using a combination of clustering and keypoint matching. The structure of
these unique slides is analyzed and converted to a formatted transcript that includes figures present on the slides. The
audio is transcribed using one of several methods. We approach the process of combining and summarizing these tran-
scripts in several ways including as keyword-based sentence extraction and temporal audio-slide-transcript association
problems. For the summarization stage, we created TransformerSum, a summarization training and inference library
that advances the state-of-the-art in long and resource-limited summarization, but other state-of-the-art models, such as
BART or PEGASUS, can be used as well. Extractive and abstractive approaches are used in conjunction to summarize
the long-form content extracted from the lectures. While the end-to-end process and each individual component yield
promising results, key areas of weakness include the speech-to-text algorithm failing to identify certain words and some
summarization methods producing sub-par summaries. These areas provide opportunities for further research.

1.2 Components

1. Slide Classifier

• Overview: The slide classifier is a computer vision machine learning model that classifies images into
9 categories as listed on its documentation page.

• Key Info: Most importantly are the slide and presenter_slide categories which refer to slides
from a screen capture and slides as recorded by a video camera, respectively. When a video cam-
era is pointed at the slides, the frame will usually include the presenter, which is the reasoning
behind the name choices. Frames from the slide class are processed differently than those from
the presenter_slide class. Namely, those from presenter_slide are automatically perspective
cropped while those from slide are not.

• Dataset: The dataset was collected using the scraper scripts in dataset/scraper-scripts. To
learn about how to collect the dataset visit Walkthrough (Step-by-Step Instructions to Create Dataset).
You can view information about each script in Scraper Scripts.

2. Summarization Models

• Locations: The neural summarization models are located in models while the non-neural algorithms
are implemented in Combination and Summarization (end_to_end/summarization_approaches).

• Neural Extractive Models: https://github.com/HHousen/TransformerSum

• Neural Abstractive Models: https://github.com/huggingface/transformers & https://github.com/
HHousen/DocSum

• More Info: See Summarization Models.

3. End-To-End Process

• Overview: Brings everything together to summarize lecture videos. It requires only one command to
summarize a lecture video. That command can contain 20 arguments or only 1: the path to the file.
See the tutorial.

2 Chapter 1. About
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• API Documentation: E2E API , use if you want to modify the scripts, if you want to write new com-
ponents (pull requests welcome), or if you want to use certain components programmatically (guide
to programmatically summarize a lecture).

• General Info: E2E General Information, use if you want to fine-tune the parameters used for conver-
sion.

• Summarization Approaches: Combination and Summarization, specific information about how the
lecture is summarized

4. Website

• https://lecture2notes.com

The directory structure of the project should be relatively easy to follow. There is essentially a subfolder in the
lecture2notes folder for each major component discussed above (documentation is in docs/ at the root level of
the repository).

Note: The slide classifier dataset is located in dataset and the model is located in models/slide_classifier.
This separation was made to disconnect the data collection code from the model training code, since they are two
distinct stages of the process that require little interaction (the only interaction is the copying of the final dataset).

• dataset: Data collection code for the slide classifier.

• end_to_end: Contains all the code (except lecture2notes.models.slide_classifier.inference and
some summarization models) required to summarize a lecture video. This includes frame extraction, OCR,
clustering, perspective cropping, spell checking, speech to text, and more.

• models: Contains the slide classifier model training code and the legacy neural summarization model repository
(https://github.com/HHousen/DocSum/) as a git module.

1.3 FAQ

Want to add to the FAQ? Open an issue on GitHub or click “Edit on GitHub” above. All contributions are greatly
appreciated. If you’re asking it, someone else probably is too.

1.3.1 Where are the summarization models?

TL;DR: https://github.com/HHousen/TransformerSum

The neural-based summarization models that were created as a major component of this research are not part of this
repository. While initially developed as part of this repository, they were broken off due to the complexity of the code
and the applicability to future projects. You can view and run the training code and use 10+ pre-trained models at
https://github.com/HHousen/TransformerSum. Essentially, the models are more accessible to other researchers for
projects unrelated to lectures if they reside in their own repository.

See Summarization Models for more information.

1.3. FAQ 3
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1.4 Significant People

The project was created by Hayden Housen during his sophomore, junior, and seniors years of high school as part of
the Science Research program. It is actively maintained and updated by him and the community.

4 Chapter 1. About
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CHAPTER

TWO

INSTALLATION

2.1 Overview

Installation is made easy due to conda environments. Simply run conda env create -f environment.yml from
the root project directory and conda will create an environment called lecture2notes with all the required packages
from environment.yml.

..note:: Read the paper for more in-depth explanations regarding the background, methodology, and results of this
project.

2.1.1 Info About Optional Components

Certain functions in the End-To-End transcribe.py file require additional downloads. If you are not using the
transcribe feature of the End-To-End approach then this notice can safely be ignored. These extra files may not be
necessary depending on your configuration. To use the similarity function to compare two transcripts a spacy model is
needed, which you can learn more about on the spacy starter models and core models documentation.

The default transcription method in the End-To-End process is to use vosk. You need to download a vosk model
from the models page (Google Drive Mirror) to use this method or you can specify a different method with the
--transcription_method flag such as --transcription_method wav2vec.

The End-To-End figure_detection.py contains a function called detect_figures(). This function requires
the EAST (Efficient and Accurate Scene Text Detector) model by default due to the do_text_check argument de-
faulting to True. See the docstring for more information. You can download the model from Dropbox (this link
was extracted from the official code) or Google Drive (my mirror). Then just extract the file by running tar -xzvf
frozen_east_text_detection.tar.gz.

2.2 Quick-Install (Copy & Paste)

git clone https://github.com/HHousen/lecture2notes.git
cd lecture2notes
conda env create
conda activate lecture2notes
python -m spacy download en_core_web_sm
gdown "https://drive.google.com/uc?id=1eXwWQujo_0HVffuUx0Fa6KydjW8h4gUb" -O␣
→˓lecture2notes/end_to_end/model_best.ckpt

Extras (Linux Only):

Install extras only after the above commands have been run.
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sudo apt install curl
sudo curl -L https://yt-dl.org/downloads/latest/youtube-dl -o /usr/local/bin/youtube-dl
sudo chmod a+rx /usr/local/bin/youtube-dl
sudo apt install ffmpeg sox wget poppler-utils

Commands to download a Vosk model (needed for speech-to-text) are available on the 4. Vosk transcription method
page.

2.3 Step-by-Step Instructions

1. Clone this repository: git clone https://github.com/HHousen/lecture2notes.git.

2. Change to project directory: cd lecture2notes.

3. Run installation command: conda env create.

4. Activate newly created conda environment: conda activate lecture2notes.

5. Run gdown “https://drive.google.com/uc?id=1eXwWQujo_0HVffuUx0Fa6KydjW8h4gUb” -O lec-
ture2notes/end_to_end/model_best.ckpt from the project root to download the slide classification model
and put it in the default expected location.

6. Other Binary Packages: Install ffmpeg, sox, wget, and poppler-utils with sudo apt install ffmpeg
sox wget poppler-utils if on linux. Otherwise, navigate to the sox homepage to download sox, the youtube-
dl homepage (GitHub) to download youtube-dl, and follow the directions in this StackOverflow answer (Win-
dows) to install poppler-utils for your platform. ffmpeg is needed for frame extraction in Dataset and
End-To-End. sox is needed for automatic audio conversion during the transcription phase of End-To-End.1
wget is used to download videos that are not on youtube as part of the video_downloader scraper script in
Dataset.

7. End-To-End Process Requirements (Optional)

1. Spacy: Download the small spacy model by running python -m spacy download
en_core_web_sm in the project root. This is required to use certain summarization and simi-
larity features (as discussed above). A spacy model is also required when using spacy as a feature
extractor in end_to_end/summarization_approaches.py.2

2. DeepSpeech/Vosk: Download the DeepSpeech model (the .pbmm acoustic model and the scorer)
from the releases page. To reduce complexity save them to deepspeech-models in the project root.3
Alternatively, it is recommended to download the small vosk model using the commands on the 4.
Vosk transcription method page.

3. EAST: Download the EAST model from Dropbox or by running gdown https://drive.google.
com/uc?id=1ZVn7_g58g4B0QNYNFE6MzRzpirsNTjwe. Extract it to the End-To-End directory by
running tar -xzvf frozen_east_text_detection.tar.gz -C end_to_end/

8. Dataset Collection Requirements (Optional) YouTube API

1. Run cp .env.example .env to create a copy of the example .env file.

2. Add your YouTube API key to your .env file.
1 If your audio is 16000Hz, 1 channel, and .wav format, then sox is not needed.
2 The default is not to use spacy for feature extraction but the large model (which can be downloaded with python -m spacy download

en_core_web_lg) is the default if spacy is manually chosen. So make sure to download the large model if you want to use spacy for feature
extraction.

3 Folder name and location do not matter. Just make sure the scorer and model are in the same directory. The scripts will automatically detect
each when given the path to the folder containing them.
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3. You can now use the scraper scripts to scrape YouTube and create the dataset needed to train the slide
classifier.

9. Transcript Download w/YouTube API (Not Recommended) If you want to download video transcripts with
the YouTube API4, place your client_secret.json in the dataset/scraper-scripts folder (if you want
to download transcripts with the scraper-scripts) or in End-To-End (if you want to download transcripts in
the entire end-to-end process that converts a lecture video to notes).

4 The default is to use youtube-dl which needs no API key.

2.3. Step-by-Step Instructions 7
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CHAPTER

THREE

TUTORIAL

After you’ve installed lecture2notes using the instructions in Installation, you can follow this guide to perform some
common actions.

..note:: Read the paper for more in-depth explanations regarding the background, methodology, and results of this
project.

3.1 Summarizing a lecture video

cd End-To-End
python main.py --auto_id --remove_duplicates --deepspeech_model_dir ../deepspeech-models/
→˓ <path to video>

• --auto_id changes the location where files will be saved during processing to a folder in the present working
directory named the first 12 characters of the input video’s SHA1 hash.

• --remove_duplicates will remove duplicate slides before clustering. Once frames have been classified and
the slides have been identified, there are likely to be duplicates. Setting this option removes very closely matching
slides. Similar slides are detected using perceptual hashing by default (other hashing methods are available).

• --deepspeech_model_dir is the path to the folder containing the DeepSpeech model files (the .pbmm acoustic
model and the scorer).

• <path to video> is the path to your video file that you want to process.

3.2 Summarizing a lecture video on YouTube

1. First, download the video from YouTube: youtube-dl <video url> (where <video url> looks like
https://www.youtube.com/watch?v=dQw4w9WgXcQ)

2. Then, process the file using a command similar to the one in Summarizing a lecture video:

cd End-To-End
python main.py --auto_id --remove_duplicates --deepspeech_model_dir ../deepspeech-models/
→˓ --transcription_method youtube --video_id <video id from youtube> <path to video>

The only differences from Summarizing a lecture video are the addition of --transcription_method youtube and
--video_id <video id from youtube>.

• --transcription_method youtube makes the script attempt to download the transcript of the video directly
from YouTube. This only works when the video has manually attached captions on YouTube. Videos with

9
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automatically generated captions from YouTube will still be processed locally using DeepSpeech by default.
This is why the --deepspeech_model_dir argument is still specified.

• --video_id <video id from youtube> tells the script which video from youtube to download the captions
from. <video id from youtube> should be set to the id of the video. The id is the part after the ?v= in the
url up to (and not including) the & or if no & then until the end of the url (if the video link is https://www.
youtube.com/watch?v=dQw4w9WgXcQ then the id is dQw4w9WgXcQ).

3.3 Summarizing a lecture video programmatically

Summarizing a lecture video programmatically is fairly easy due to the LectureSummarizer class.

First, create a dictionary or argparse.Namespace of the settings you want to use for your LectureSummarizer
object. The default parameters are stored in a json file at end_to_end/default_params.json. This file directly
mirrors the defaults set for each argparse argument in end_to_end/main.py, the script used for CLI usage.

However, the default configuration leaves video_path set to null so we need to override this. Instead of modifying
or creating a new configuration object for each video, you can pass overrides to the LectureSummarizer object upon
creation (see below).

Next, create your LectureSummarizer object, call the run_all() function, and get the summary like so:

from lecture2notes.end_to_end.summarizer_class import LectureSummarizer
default_config_path = "lecture2notes/end_to_end/default_params.json"
video_path = "path/to/my/amazing/lecture/video.mp4"
summarizer = LectureSummarizer(default_config_path, video_path=video_path)

summarizer.run_all()

structured_summary = summarizer.final_data["structured_summary"]
lecture_summary = summarizer.final_data["lecture_summary"]
transcript = summarizer.final_data["transcript"]

Alternatively, you can iterate over the all_step_functions attribute of your LectureSummarizer object to run
your own code between each step of the process. For example, you can store the current step in a database or to the file
system so that if you restart your program the LectureSummarizer can automatically resume:

last_step_run = int(open("last_step_run.txt", "r").read())

with open("last_step_run.txt", "w") as file:
for idx, step_func in enumerate(summarizer.all_step_functions):

if idx + 1 < last_step_run:
# Skip steps that have already been ran
continue

last_step_run = idx + 1
file.write(last_step_run)

step_func()

10 Chapter 3. Tutorial



CHAPTER

FOUR

DATASET GENERAL INFORMATION

4.1 Directory Structure

• classifier-data: Created by 5. Compile Data. Contains all extracted slides and extracted sorted frames from the
videos directory. This is the folder that should be given to the model for training.

• scraper-scripts: Contains all of the scripts needed to obtain and manipulate the data. See Scraper Scripts for
more information.

• slides:

– images: The location where slide images extracted from slideshows in pdfs subdirectory are saved
(used by 3. pdf2image).

– pdfs: The location where downloaded slideshow PDFs are saved (used by 2. Slides Downloader).

• videos: Contains the following directory structure for each downloaded video:

– video_id: The parent folder containing all the files related to the specific video.

∗ frames: All frames extracted from video_id by 3. Frame Extractor.

∗ frames_sorted: Frames from video_id that are grouped into correct classes. 4. Auto Sort can
help with this but you must verify correctness. More at 4. Auto Sort.

• slides-dataset.csv: A list of all the slide presentations used in the dataset. NOT automatically updated by 2.
Slides Downloader. You must manually update this file if you want the dataset to be reproducible.

• sort_file_map.csv: A list of filenames and categories. Used exclusively by 4. Sort From File to either make a
file mapping of the category to which each frame belongs or to sort each file in sort_file_map.csv, moving
the respective frame from video_id/frames to video_id/frames_sorted/category.

• to-be-sorted.csv: A list of videos and specific frames that have been sorted by 4. Auto Sort but need to be
checked by a human for correctness. When running 4. Auto Sort any frames where the AI model’s confidence
level is below a threshold are added to this list as most likely incorrect.

• videos-dataset.csv: A list of all videos used in the dataset. Automatically updated by 1. YouTube Scraper and
1. Website Scraper. The provider column is used by 2. Video Downloader to determine how to download the
video.

11
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4.2 Walkthrough (Step-by-Step Instructions to Create Dataset)

1. Install Prerequisite Software: youtube-dl, wget, ffmpeg, poppler-utils (see Quick-Install (Copy & Paste))

2. Download Content:

1. Download all videos: python 2-video_downloader.py csv

2. Download all slides: python 2-slides_downloader.py csv

3. Data Pre-processing:

1. Convert slide PDFs to PNGs: python 3-pdf2image.py

2. Extract frames from all videos: python 3-frame_extractor.py auto

3. Sort the frames: python 4-sort_from_file.py sort

4. Compile and merge the data: python 5-compile_data.py

4.3 Transcripts WER

Script location: dataset/transcripts_wer.py

This script will calculate the Word Error Rate (WER), Match Error Rate (MER), and Word Information Lost (WIL)
for all videos in dataset/videos-dataset.csv that are YouTube videos with manual transcripts added (see the
YouTube transcription method for more info about transcripts on YouTube).

There are two modes:

1. transcribe: Runs speech-to-text with DeepSpeech.

Process: For each transcript in dataset/transcripts:

1. Download the audio for the video

2. Convert the audio to WAV

3. Run DeepSpeech speech-to-text

2. calc: Calculate the statistics between the YouTube (human, ground-truth) and DeepSpeech (AI, ML transcripts.

Process: For each processed transcript (those with --suffix) in dataset/transcripts:

1. Convert the YouTube captions file to a string

2. Apply pre-processing to the transcripts (to lower case, remove multiple spaces, strip, sentences
to list of words, remove empty strings)

3. Compute the statistics using the jiwer package

4. Log the stats

5. When all files are complete then log the average stats

Note: This script does not automatically download the transcripts for the YouTube videos. It just transcribes the
YouTube videos in dataset/videos-dataset.csvwith DeepSpeech and computes statistics with ground-truth tran-
scripts. This means your ground-truth transcripts can come from a source other than YouTube and this script will still
work. To download the transcripts for the videos in dataset/videos-dataset.csv use 2. Video Downloader.

12 Chapter 4. Dataset General Information
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4.3.1 Directions

Step 0: Make sure how have some videos in dataset/videos-dataset.csv. The 1. YouTube Scraper script can be
used to add videos to the dataset.

1. Run python 2-video_downloader.py csv --transcript to download transcripts (in “.vtt” format) for all
the YouTube videos in dataset/videos-dataset.csv to the dataset/transcripts folder.

2. Run python transcripts_wer.py transcribe to transcribe all the videos with ground-truth transcripts
using DeepSpeech.

3. Run python transcripts_wer.py calc to calculate the statistics (including WER) between the DeepSpeech
and YouTube transcripts.

4.3.2 Transcripts WER Script Help

usage: transcripts_wer.py [-h] [--transcripts_dir TRANSCRIPTS_DIR]
[--deepspeech_dir DEEPSPEECH_DIR] [--suffix SUFFIX]
[--no_chunk]
[-l {DEBUG,INFO,WARNING,ERROR,CRITICAL}]
{transcribe,calc_wer}

Word Error Rate (WER) for Transcripts with DeepSpeech

positional arguments:
{transcribe,calc_wer}

`transcribe` each video and create a transcript using
ML models or use `calc_wer` to compute the WER for the
created transcripts

optional arguments:
-h, --help show this help message and exit
--transcripts_dir TRANSCRIPTS_DIR

path to the directory containing transcripts
downloaded with 2-video_downloader.py

--deepspeech_dir DEEPSPEECH_DIR
path to the directory containing the DeepSpeech models

--suffix SUFFIX string added after the video id and before the
extension in the transcript output from the ML model

--no_chunk Disable audio chunking by voice activity.
-l {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --log {DEBUG,INFO,WARNING,ERROR,CRITICAL}

Set the logging level (default: 'Info').

4.3. Transcripts WER 13
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CHAPTER

FIVE

SCRAPER SCRIPTS

All scripts that are needed to obtain and manipulate the data. Located in dataset/scraper-scripts.

Note: The number before the name of each script corresponds to the order the scripts are normally used in. Some scripts
may have the same number because they do different tasks that take the same spot in the data processing process. For
instance, there may be one script to work with slide presentations (PDFs) and another to work with videos that occupy
the same position (for instance 2. Slides Downloader and 2. Video Downloader)

5.1 1. Website Scraper

Takes a video page link, video download link, and video published date and then adds that information to dataset/
videos-dataset.csv.

• Command:

python 1-website_scraper.py <date> <page_link> <video_download_link>
→˓<description (optional)>

– <date> is the date the lecture was published

– <page_link> is the link to the webpage where the video can be found

– <video_download_link> is the direct link to the video

– <description (optional)> is an optional description that gets saved with the rest of the
information (currently not used internally)

• Example:

python 1-website_scraper.py 1-1-2010 \
https://oyc.yale.edu/astronomy/astr-160/update-1 \
http://openmedia.yale.edu/cgi-bin/open_yale/media_downloader.cgi?file=/
→˓courses/spring07/astr160/mov/astr160_update01_070212.mov

15
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5.2 1. YouTube Scraper

Takes a video id or channel id from YouTube, extracts important information using the YouTube Data API, and then
adds that information to dataset/videos-dataset.csv.

• Output of python 1-youtube_scraper.py --help:

usage: 1-youtube_scraper.py [-h] [-n N] [-t] [--transcript-use-yt-api] [-l␣
→˓N]

[-f PATH] [-o SEARCH_ORDER] [-p PARAMS]
{video,channel,transcript} STR

YouTube Scraper

positional arguments:
{video,channel,transcript}

Get metadata for a video or a certain number of␣
→˓videos

from a channel. Transcript mode downloads the
transcript for a video_id.

STR Channel or video id depending on mode

optional arguments:
-h, --help show this help message and exit
-n N, --num_pages N Number of pages of videos to scape if mode is

`channel`. 50 videos per page.
-t, --transcript Download transcript for each video scraped.
--transcript-use-yt-api

Use the YouTube API instead of youtube-dl to␣
→˓download

transcripts. `--transcript` must be specified for␣
→˓this

option to take effect.
-l N, --min_length_check N

Minimum video length in minutes to be scraped. Only
works when `mode` is "channel"

-f PATH, --file PATH File to add scraped results to.
-o SEARCH_ORDER, --search_order SEARCH_ORDER

The order to list videos from a channel when `mode`␣
→˓is

'channel'. Acceptable values are in the YouTube API
Documentation: https://developers.google.com/

→˓youtube/v
3/docs/search/list

-p PARAMS, --params PARAMS
A string dictionary of parameters to pass to the␣

→˓call
to the YouTube API. If mode=video then the
`videos.list` api is used. If mode=channel then the
`search.list` api is used.

• Examples

– Add a single lecture video to the dataset:

16 Chapter 5. Scraper Scripts
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python 1-youtube_scraper.py video 63hAHbkzJG4

– Get the transcript for a video file:

python 1-youtube_scraper.py transcript 63hAHbkzJG4

– Add a video to the dataset/videos-dataset.csv and get the transcript:

python 1-youtube_scraper.py video 63hAHbkzJG4 --transcript

– Scrape the 50 latest videos from a channel:

python 1-youtube_scraper.py channel UCEBb1b_L6zDS3xTUrIALZOw --num_pages␣
→˓1

– Scrape the 50 most viewed videos from a channel:

python 1-youtube_scraper.py channel UCEBb1b_L6zDS3xTUrIALZOw --num_pages␣
→˓1 --search_order viewCount

– Scrape the 50 latest videos from a channel that were published before 2020:

python 1-youtube_scraper.py channel UCEBb1b_L6zDS3xTUrIALZOw --num_pages␣
→˓1 --params '{"publishedBefore": "2020-01-01T00:00:00Z"}'

– Scrape the 100 latest videos from a channel longer than 20 minutes:

python 1-youtube_scraper.py channel UCEBb1b_L6zDS3xTUrIALZOw --num_pages␣
→˓2 --min_length_check 20

– Mass Download 1 (to be used with 2. Mass Data Collector):

python 1-youtube_scraper.py channel UCEBb1b_L6zDS3xTUrIALZOw --num_pages␣
→˓2 --min_length_check 20 -f ../mass-download-list.csv

– Mass Download 2 (specify certain dates and times):

python 1-youtube_scraper.py channel UCEBb1b_L6zDS3xTUrIALZOw --num_pages␣
→˓2 --min_length_check 20 -f ../mass-download-list.csv --params '{
→˓"publishedBefore": "2015-01-01T00:00:00Z", "publishedAfter": "2014-01-
→˓01T00:00:00Z"}'

5.3 2. Mass Data Collector

This script provides a method to collect massive amounts of new data for the slide classifier. These new lecture videos
are selected based on what the model struggles with (where its certainty is lowest). This means the collected videos
train the model the fastest while exposing it to the most unique situations. However, this method will ignore videos that
the model is very confident with but is actually incorrect. These videos are the most beneficial but must be manually
found.

The Mass Data Collector does the following for each video in dataset/mass-download-list.csv:

1. Download the video to dataset/mass-download-temp/[video_id]

5.3. 2. Mass Data Collector 17



Lecture2Notes, Release 1.0.0

2. Extracts frames

3. Classifies the frames to obtain certainties and the percent incorrect (where certainty is below a threshold)

4. Adds video_id, average_certainty, num_incorrect, percent_incorrect, and certainties to
dataset/mass-download-results.csv

5. Deletes video folder (dataset/mass-download-temp/[video_id])

The --top-k (or -k) argument can be specified to the script add the top k most uncertain videos to the dataset/
videos-dataset.csv. This must be ran after the dataset/mass-download-results.csv file has been populated.

Warning: This script will use a lot of bandwidth/data. For instance, the below commands will download 100
videos from YouTube. If each video is 100MB (which is likely on the low end) then this will download at least
10GB of data.

Examples:

1. Low Disk Space Usage, High Bandwidth, Duplicate Calculations, Large Dataset Filesize Recommended
if you want to build the dataset at full 1080p resolution so that it can be used with a plethora of model
architectures. This was how the official dataset was compiled.

The below commands do the following:

1. Scrape the MIT OpenCourseWare YouTube channel for the latest 100 videos that are longer than 20
minutes and save the data to ../mass-download-list.csv

• Optionally, only find videos in a date range. To do this you need to specify the --params
argument like so: --params '{"publishedBefore": "2014-07-01T00:00:00Z",
"publishedAfter": "2014-01-01T00:00:00Z"}'. The full list of available parameters
can be found in the YouTube API Documentation for search.list if mode is channel and YouTube
API Documentation for videos.list if mode is video.

2. Run the Mass Data Collector to download each video at 480p and determine how certain the model is
with its predictions on that video.

3. Take the top 20 most uncertain videos and add them to the dataset/videos-dataset.csv.

4. Download the newly added 20 videos at 480p

5. Extract frames from the new videos

6. Sort the frames from top 20 most uncertain videos

7. Now it is time for you to check the model’s predictions, fix them, and then train a better model on the
new data.

python 1-youtube_scraper.py channel UCEBb1b_L6zDS3xTUrIALZOw --num_pages 2 --
→˓min_length_check 20 -f ../mass-download-list.csv
python 2-mass_data_collector.py --resolution 480
python 2-mass_data_collector.py -k 20
python 2-video_downloader.py csv
python 3-frame_extractor.py auto
python 4-auto_sort.py

2. High Disk Space Usage, Higher Bandwidth, No Duplicate Calculations, Large Dataset Filesize Recom-
mended if you want to build the dataset at full 1080p resolution but do not want to “waste” compute
resources on duplicate calculations.
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Specifying the --no_remove argument to 2-mass_data_collector.py will make the script keep the
processed videos instead of removing them. This means the videos can be copied to the dataset/videos
folder, manually inspected and fixed, and then 5. Compile Data can be used to copy them to the dataset/
classifier-data folder.

It is recommended to not set the --resolution if using this method because some of the downloaded
videos will eventually be added to the dataset. The dataset is compiled at maximum resolution so that
different models can be used that accept different resolutions.

3. Lower Disk Space Usage, Low Bandwidth, Duplicate Calculations, Small Dataset Filesize Recom-
mended if you want to build the dataset for a specific model architecture and if you want the dataset to
take up a relatively small amount of disk space.

If you want to train a resnet34, for example, which expects 224x224 input images, then you can set the
resolution to 240p when downloading videos since the frames will be scaled before being used for training
anyway. However, if you ever want to train a model that expects larger input images, you will have to
download and reprocess the entire dataset.

The modified commands look like this:

python 1-youtube_scraper.py channel UCEBb1b_L6zDS3xTUrIALZOw --num_pages 2 --
→˓min_length_check 20 -f ../mass-download-list.csv
python 2-mass_data_collector.py --resolution 240
python 2-mass_data_collector.py -k 20
python 2-video_downloader.py csv --resolution 240
python 3-frame_extractor.py auto
python 4-auto_sort.py

Notice that the resolution was changed to 240 for the second command and the resolution option was added
to the fourth command.

This option can be modified as described in the second method by adding the --no_remove argument to
2-mass_data_collector.py. This will increase disk usage but will prevent duplicate calculations and
decrease overall bandwidth since videos will not have to be redownloaded.

5.3.1 Mass Dataset Collector Script Help

Output of python 2-mass_data_collector.py --help:

usage: 2-mass_data_collector.py [-h] [-k K] [-nr] [-r RESOLUTION] [-p]

Mass Data Collector

optional arguments:
-h, --help show this help message and exit
-k K, --top_k K Add the top `k` most uncertain videos to the videos-

dataset.
-nr, --no_remove Don't remove the videos after they have been

processed. This makes it faster to manually look
through the most uncertain videos since they don't
have to be redownloaded, but it will use more disk
space.

-r RESOLUTION, --resolution RESOLUTION
The resolution of the videos to download. Default is
maximum resolution.

(continues on next page)
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(continued from previous page)

-p, --pause Pause after each video has been processed but before
deletion.

5.4 2. Slides Downloader

Takes a link to a pdf slideshow and downloads it to dataset/slides/pdfs or downloads every entry in dataset/
slides-dataset.csv (csv option).

• Command: python slides_downloader.py <csv/your_url>

• Examples:

– If csv: python 2-slides_downloader.py csv

– If your_url: python 2-slides_downloader.py https://bit.ly/3dYtUPM

• Required Software: wget

5.5 2. Video Downloader

Uses youtube-dl (for youtube videos) and wget (for website videos) to download either a youtube video by id or
every video that has not been download in dataset/videos-dataset.csv.

This script can also download the transcripts from YouTube using youtube-dl for each video in dataset/
videos-dataset.csv with the --transcript argument..

• Command: python 2-video_downloader.py <csv/youtube –video_id your_youtube_video_id>

• Examples:

– If csv: python 2-video_downloader.py csv

– If your_youtube_video_id: python 2-video_downloader.py youtube --video_id
1Qws70XGSq4

– Download all transcripts: python 2-video_downloader.py csv --transcript (will not down-
load videos or change dataset/videos-dataset.csv)

• Required Software: youtube-dl (YT-DL Website/YT-DL Github), wget

5.5.1 Video Downloader Script Help

Output of python 2-video_downloader.py --help:

usage: 2-video_downloader.py [-h] [--video_id VIDEO_ID] [--transcript]
[-l {DEBUG,INFO,WARNING,ERROR,CRITICAL}]
{csv,youtube}

Video Downloader

positional arguments:
{csv,youtube} `csv`: Download all videos that have not been marked

as downloaded from the `videos-dataset.csv`.
(continues on next page)
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(continued from previous page)

`youtube`: download the specified video from YouTube
with id ``--video_id`.

optional arguments:
-h, --help show this help message and exit
--video_id VIDEO_ID The YouTube video id to download if `method` is

`youtube`.
--transcript Download the transcript INSTEAD of the video for each

entry in `videos-dataset.csv`. This ignores the
`downloaded` column in the CSV and will not download
videos.

-r RESOLUTION, --resolution RESOLUTION
The resolution of the videos to download. Default is
maximum resolution.

-l {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --log {DEBUG,INFO,WARNING,ERROR,CRITICAL}
Set the logging level (default: 'Info').

5.6 3. Frame Extractor

Extracts either every N frames from a video file (selected by id and must be in videos folder) or, in auto mode, ev-
ery N frames from every video in the dataset that has been downloaded and has not had its frames extracted already.
extract_every_x_seconds can be set to auto to use the get_extract_every_x_seconds() function to automat-
ically determine a good number of frames to extract. auto mode uses this feature and allows for exact reconstruction
of the dataset. Extracted frames are saved into dataset/videos/[video_id]/frames.

• Command: python 3-frame_extractor.py <video_id/auto> <extract_every_x_seconds/auto>
<quality>

• Examples:

– If video_id: python 3-frame_extractor.py VT2o4KCEbes 20 5 or to automatically extract a
good number of frames: python 3-frame_extractor.py 63hAHbkzJG4 auto 5

– If auto: python 3-frame_extractor.py auto

• Required Software: ffmpeg (FFmpeg Website/FFmpeg Github)

5.7 3. pdf2image

Takes every page in all pdf files in dataset/slides/pdfs, converts them to png images, and saves them in dataset/
slides/images/pdf_file_name.

• Command: python 3-pdf2image.py

• Required Software: poppler-utils (pdftoppm) (Man Page/Website)
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5.8 4. Auto Sort

Goes through every extracted frame for all videos in the dataset that don’t have sorted frames (based on the presence
of the sorted_frames directory) and classifies them using models/slide_classifier. You need either a trained
pytorch model to use this. Creates a list of frames that need to be checked for correctness by humans in dataset/
to-be-sorted.csv. This script imports certain files from models/slide_classifier so the directory structure
must not have been changed from installation.

• Command: python 4-auto_sort.py

5.9 4. Sort From File

Creates a CSV of the category assigned to each frame of each video in the dataset or organizes extracted frames from a
previously created CSV. The purpose of this script is to exactly reconstruct the dataset without downloading the already
sorted images.

There are three options: 1. make: make a file mapping of the category to which each frame belongs by reading
data from the dataset/videos directory. 2. make_compiled performs the same task as make but reads from the
dataset/classifier-data directory. This is useful if the dataset has been compiled and the dataset/videos
folder has been cleared. 3. sort: sort each file in dataset/sort_file_map.csv, moving the respective frame from
video_id/frames to video_id/frames_sorted/category.

Note: This script appends to dataset/sort_file_map.csv. It will not overwrite data.

• Command: python 4-sort_from_file.py <make/make_compiled/sort>

5.10 5. Compile Data

Merges the sorted frames from all the videos and slides in the dataset to dataset/classifier-data.

Note: This script will not erase any data already stored in the dataset/classifier-data dataset folder.

• Command: python 5-compile_data.py <all/videos/slides>

• Examples:

– If videos: python 5-compile_data.py videos, processes only sorted frames from videos

– If slides: python 5-compile_data.py slides, processes images from slides

– If all: python 5-compile_data.py all, processes from both videos and slides
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SIX

DOWNLOAD DATASET

Note: For more information about the dataset see Dataset General Information and for more information about the
models trained using this data see Pre-trained Models.

Name Description Download
classifier-data-cv Standard dataset split into 3 sets for cross validation Google Drive Link
classifier-data-three-train-test 3 class dataset split into train and test sets Google Drive Link
classifier-data-three 3 class dataset (slide, presenter_side, other) Google Drive Link
classifier-data-train-test Standard dataset split into train and test sets Google Drive Link
classifier-data Standard dataset grouped by the 9 classes Google Drive Link

Additionally, all of the above versions of the dataset are available from this Google Drive folder
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https://drive.google.com/uc?id=1Xoq95r8nc2f0oZi7bG2LqXRJM6UxMtKF
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https://drive.google.com/drive/folders/1CrA0-ZJgjWi1ruTM-T2lagDJkOiMKVE4
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CHAPTER

SEVEN

SLIDE CLASSIFIER

7.1 Overview

The slide classification model is used in the end-to-end process to classify frames of an input video into 9 classes:

• audience

• audience_presenter

• audience_presenter_slide

• demo

• presenter

• presenter_slide

• presenter_whiteboard

• slide

• whiteboard

This allows the system to identify images containing slides for additional processing and means it can ignore useless
frames that do not belong in a summary, such as those containing only the presenter or audience. We conduct pre-
liminary tests with 7 architectures, but only report results from ResNet and EfficientNet models due to their superior
accuracies.

Important: Interactive charts, graphs, raw data, run commands, hyperparameter choices, and more for all experiments
are publicly available on the Lecture2Notes-Slide_Classifier Weights & Biases page.

7.2 Pre-trained Models

Quick Start: Use the three-category model trained on the train-test-three dataset. It
achieves the highest accuracy (about 90%). Run gdown "https://drive.google.com/uc?
id=1eXwWQujo_0HVffuUx0Fa6KydjW8h4gUb" -O lecture2notes/end_to_end/model_best.ckpt from
the project root to download the model and put it in the default expected location.

Model Dataset Accuracy Model Download Other Checkpoints
Final-general train-test 82.62 Google Drive Link Google Drive Folder
Three-category train-test-three 89.97 Google Drive Link Google Drive Folder
Squished-image train-test 83.86 Google Drive Link Google Drive Folder

train-test-three 87.21 Google Drive Link Google Drive Folder
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https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1905.11946
https://app.wandb.ai/hhousen/lecture2notes-slide_classifier
https://drive.google.com/uc?id=1tSbbehGTiW-ETODqysaYjB81-LiE6ddK
https://drive.google.com/drive/folders/1vQ9UcjYZnh54Fs3cBLZU8lKfFER4IlSC
https://drive.google.com/uc?id=1eXwWQujo_0HVffuUx0Fa6KydjW8h4gUb
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https://drive.google.com/drive/folders/17W75GkXXxxBkZtkG9CplStowcRApsCIs


Lecture2Notes, Release 1.0.0

The median models (recommended) listed above can also be found on the Lecture2Notes-Slide_Classifier Weights &
Biases page or from this Google Drive folder.

Every model that was trained for the experiments is available from the Lecture2Notes-Slide_Classifier Weights &
Biases page or from this Google Drive mirror.

7.3 Model Architecture

After testing several architectures, we chose ResNet-34 as our final model architecture due to its speed, accuracy, and
size. We started training all models from ImageNet pre-trained checkpoints and only perform gradient updates on the
last chunk of layers (the pooling and fully connected linear layers shown below). We modified the architectures by
changing the last chunk to enable better fine-tuning:

1. ResNet: AdaptiveConcatPool2d(1), Flatten(), BatchNorm1d(1024), Dropout(0.25), Linear(1024,
512), ReLU(inplace=True), BatchNorm1d(512), Dropout(0.5), Linear(512, num_classes)

2. EfficientNet: AdaptiveConcatPool2d(1), Flatten(), Linear(num_features * 2, 512),
MemoryEfficientSwish(), BatchNorm1d(512), Dropout(0.5), Linear(512, num_classes)

7.4 Model Training Approach

We performed 3-fold cross validation (CV) in order to optimize the slide classifier’s hyperparameters. We used the Tree-
structured Parzen Estimator algorithm provided by Optuna. All important hyperparameters were optimized, including
model selection between a ResNet-34 and an EfficientNet-b0.

We implemented CV by splitting the dataset into 3 roughly equal sections containing 5502, 5040, and 5057 frames
respectively. The hyperparameter optimization algorithm optimizes the average accuracy across the validation sets for
each CV split. The accuracy on the validation set is used instead of the training set to make sure the model does not
memorize specific characteristics of the images that it is trained on. Accuracy is optimized as opposed to f1-score
because f1-score takes into account class imbalance. For this model, the slide and presenter_slide classes are
the two largest and also are the only classes used in the rest of the lecture summarization pipeline. If the model fails
to correctly classify frames into the other categories there will be no impact on the final summary. These additional
categories were included to allow for future research without having to relabel the data. For instance, the whiteboard
class can be used in the future to extract handwritten text and drawing from a whiteboard to be added to notes.

Once the best hyperparameters were determined, we split the original dataset into training and testing sets (the
train-test dataset) and retrained the model with the best hyperparameters. We did not simply copy the model
checkpoint that reached the highest accuracy during the hyperparameter optimization process because splitting the
dataset again allows us to train the model on 80% of the data instead of 67%. To create the testing set we selected a
subset of videos that account for about 20% (by the number of videos not frames) of the complete dataset. This subset
minimizes the deviation of the testing set percentage (items in the testing set divided by total items in category) from
20% for each category. We tested 10 million combinations of videos and obtained an average deviation of 0.0929,
which equates to the following testing set percentages: slide=0.186, whiteboard=0.101, audience_presenter=0.201,
presenter_whiteboard=0.205, presenter_slide=0.188, audience_presenter_slide=0.194, demo=0.294, presenter=0.208,
audience=0.304. Selecting a random subset was not used because it could have resulted in class imbalance between
the two datasets, thus offsetting the results. Therefore, there are 16 videos (3088 frames) and 62 videos (12511 frames)
in the testing and training sets respectively.

Since only the slide and presenter_slide classes are used in the end-to-end process, we trained a separate model
with those classes and an other class containing the remaining frames. We created a train-test-three dataset
with these three categories using the same splitting approach that was used to create the train-test dataset. The
average deviation was 0.001104 after 156 million combinations, which equates to the following testing set percentages:
slide=0.200, presenter_slide=0.200, other=0.197.
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Since pre-trained ImageNet CNNs accept square images, but video frames typically have an aspect ratio of 16:9, we
center crop the data to a square and then scale to the correct dimensions for the train-test and train-test-three
datasets. However, this may remove important data. Thus, we train a model on both datasets using squished images
created by simply rescaling the image to the correct dimensions. Models trained using squished images will learn
squished features and thus will produce variable results on images with a proper aspect ratio.

7.5 Results

Table 1: Performance of the 4 model configurations on the testing set.
Model Dataset Accuracy Accuracy (train) F-score Precision Recall
Final-general train-test 82.62 98.58 87.44 97.73 82.62
Three-category train-test-three 89.97 99.72 93.82 99.95 89.97
Squished-image train-test 83.86 97.16 88.16 97.72 83.86

train-test-three 87.21 100.00 91.57 99.80 87.21

After training 262 models for a total of 94 trials during CV, the highest average accuracy of 85.42% was achieved
by a ResNet-34 model after training for 9 epochs with the following hyperparameters: batch_size=64, learn-
ing_rate=0.00478, momentum=0.952, weight_decay=0.00385, adamw_alpha=0.994, adamw_eps=4.53e-07, sched-
uler=onecycle.

Table 2: Classification report for median (by accuracy) non-squished
final-general model

Class Name Precision Recall F1-Score Support
audience 0.00 0.00 0.00 14
audience_presenter 0.52 0.21 0.30 57
audience_presenter_slide 0.46 0.32 0.38 34
demo 0.15 0.07 0.10 126
presenter 0.91 0.94 0.92 976
presenter_slide 0.78 0.86 0.82 934
presenter_whiteboard 0.89 0.90 0.89 372
slide 0.86 0.85 0.86 557
whiteboard 0.62 0.44 0.52 18
accuracy – – 0.83 3088
macro avg 0.58 0.51 0.53 3088
weighted avg 0.81 0.83 0.82 3088

Table 3: Classification report for median (by accuracy) non-squished
three-category model

Class Name Precision Recall F1-Score Support
other 0.91 0.98 0.94 1504
presenter_slide 0.93 0.80 0.86 992
slide 0.86 0.90 0.88 600
accuracy – – 0.91 3096
macro avg 0.90 0.89 0.89 3096
weighted avg 0.91 0.91 0.90 3096

For each of the 4 model configurations, we trained 11 models and report the average metrics in the tables and figures
on this page.
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The final-general model (trained on the train-test dataset with the best hyperparameters found) achieved an average
accuracy of 82.62%. About 15% of the slide frames were incorrectly classified as presenter_slide. About 14%
of the presenter_slide (of which 50% were slide and 43% were presenter) frames were classified incorrectly.
Incorrectly classifying slide frames as presenter_slide will have minimal impact on the final summary. Incor-
rectly classifying presenter_slide frames as slide will impact the final summary because they will not receive the
correct processing. Incorrectly classifying presenter_slide as presenter represents a possible loss of information,
but this is unlikely due to the same slide appearing in multiple frames.

Fig. 1: Final-general slide classification model confusion matrix

The squished-image model (trained on the train-test dataset) slightly improves upon the results of the final-general
mode by achieving an average accuracy of 83.86%, an increase of 1.24 percentage points. The results of the three-
category model (trained on the train-test-three dataset) give a better picture of real-world performance with
an average accuracy of 89.97%. Squishing the images when training on the train-test-three dataset does not
appear to improve performance like it did with the train-test dataset. Training the squished-image model on the
train-test-three dataset (squished-image-three model) yields an average accuracy of 87.21%, a decrease of 2.76
percentage points from the three-category model. In the final pipeline, we use the three-category model.
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Fig. 2: Three-category slide classification model confusion matrix
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7.6 Script Descriptions

Note: Visit the Slide Classifier API page to see the documentation for each function in more detail.

• class_cluster_scikit.py: Implements KMeans and AffinityPropagation from sklearn.cluster to provide
a lecture2notes.models.slide_classifier.class_cluster_scikit.Cluster class. The code is doc-
umented in file. The purpose is to add feature vectors using add(), then cluster the features, and finally return
a list of files and their corresponding cluster centroids with create_move_list(). Three important functions
and their use cases follow:

– create_move_list() is called in lecture2notes.end_to_end.cluster.ClusterFilesystem and
returns a list of filenames and their corresponding clusters.

– calculate_best_k() generates a graph (saved to best_k_value.png if using Agg matplotlib backend)
that graphs the cost (squared error) as a function of the number of centroids (value of k) if the algorithm is
"kmeans". The point at which the graph becomes essentially linear is the optimal value of k.

– visualize() creates a tensorboard projection of the cluster for simplified viewing and understanding.

• class_cluster_faiss.py: An outdated version of class_cluster_scikit that uses facebookresearch/faiss (specif-
ically the kmeans implementation documented here) to provide a Cluster class. More details in the
class_cluster_scikit entry above.

• custom_nnmodules.py: Provides a few custom (copied from fastai) nn.Modules.

• inference.py: Sets up model and provides get_prediction(), which takes an image and returns a prediction
and extracted features.

• lr_finder.py: Slightly modified (allows usage of matplotlib Agg backend) code from davidtvs/pytorch-lr-finder
to find the best learning rate.

• mish.py: Code for the mish activation function.

• slide-classifier-fastai.ipynb: Notebook to train simple fastai classifier on the dataset in dataset/
classifier-data. It is outdated and not supported and only remains in the repository as an example.

• slide_classifier_helpers.py: Helper functions for slide_classifier_pytorch.py. Includes RELU to Mish
activation function conversion and confusion matrix plotting functions among others.

• slide_classifier_pytorch.py: The main model code which uses advanced features such as the AdamW optimizer
and a modified ResNet that allows for more effective pre-training/feature extracting.

• slide-classifier-pytorch-old.py: The old version of the slide classifier model training code. This old version
was not organized as well as the current version. The old version was raw PyTorch code since it did not utilize
pytorch_lightning.

7.7 Slide-Classifier-Pytorch Help

Output of python slide_classifier_pytorch.py --help:

usage: slide_classifier_pytorch.py [-h] [--default_root_dir DEFAULT_ROOT_DIR]
[--min_epochs MIN_EPOCHS]
[--max_epochs MAX_EPOCHS]
[--min_steps MIN_STEPS]
[--max_steps MAX_STEPS] [--lr LR]
[--check_val_every_n_epoch CHECK_VAL_EVERY_N_EPOCH]

(continues on next page)
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(continued from previous page)

[--gpus GPUS] [--overfit_pct OVERFIT_PCT]
[--train_percent_check TRAIN_PERCENT_CHECK]
[--val_percent_check VAL_PERCENT_CHECK]
[--test_percent_check TEST_PERCENT_CHECK]
[--amp_level AMP_LEVEL]
[--precision PRECISION] [--seed SEED]
[--profiler]
[--progress_bar_refresh_rate PROGRESS_BAR_REFRESH_

→˓RATE]
[--num_sanity_val_steps NUM_SANITY_VAL_STEPS]
[--use_logger {tensorboard,wandb}]
[--do_train] [--do_test]
[--load_weights LOAD_WEIGHTS]
[--load_from_checkpoint LOAD_FROM_CHECKPOINT]
[-l {DEBUG,INFO,WARNING,ERROR,CRITICAL}]
[-a ARCH] [-j N]
[--train_batch_size TRAIN_BATCH_SIZE]
[--val_batch_size VAL_BATCH_SIZE]
[--test_batch_size TEST_BATCH_SIZE]
[--momentum M] [--weight_decay W] [-k K]
[--optimizer_alpha N] [--optimizer_eps N]
[--pretrained] [--random_split]
[--relu_to_mish]
[--feature_extract {normal,advanced,none}]
[-o OPTIMIZER]
DIR

positional arguments:
DIR path to dataset

optional arguments:
-h, --help show this help message and exit
--default_root_dir DEFAULT_ROOT_DIR

Default path for logs and weights
--min_epochs MIN_EPOCHS

Limits training to a minimum number of epochs
--max_epochs MAX_EPOCHS

Limits training to a max number number of epochs
--min_steps MIN_STEPS

Limits training to a minimum number number of steps
--max_steps MAX_STEPS

Limits training to a max number number of steps
--lr LR, --learning_rate LR

initial learning rate
--check_val_every_n_epoch CHECK_VAL_EVERY_N_EPOCH

Check val every n train epochs.
--gpus GPUS Number of GPUs to train on or Which GPUs to train on.

(default: -1 (all gpus))
--overfit_pct OVERFIT_PCT

Uses this much data of all datasets (training,
validation, test). Useful for quickly debugging or
trying to overfit on purpose.

(continues on next page)
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(continued from previous page)

--train_percent_check TRAIN_PERCENT_CHECK
How much of training dataset to check. Useful when
debugging or testing something that happens at the end
of an epoch.

--val_percent_check VAL_PERCENT_CHECK
How much of validation dataset to check. Useful when
debugging or testing something that happens at the end
of an epoch.

--test_percent_check TEST_PERCENT_CHECK
How much of test dataset to check.

--amp_level AMP_LEVEL
The optimization level to use (O1, O2, etc...) for
16-bit GPU precision (using NVIDIA apex under the
hood).

--precision PRECISION
Full precision (32), half precision (16). Can be used
on CPU, GPU or TPUs.

--seed SEED Seed for reproducible results. Can negatively impact
performace in some cases.

--profiler To profile individual steps during training and assist
in identifying bottlenecks.

--progress_bar_refresh_rate PROGRESS_BAR_REFRESH_RATE
How often to refresh progress bar (in steps). In
notebooks, faster refresh rates (lower number) is
known to crash them because of their screen refresh
rates, so raise it to 50 or more.

--num_sanity_val_steps NUM_SANITY_VAL_STEPS
Sanity check runs n batches of val before starting the
training routine. This catches any bugs in your
validation without having to wait for the first
validation check.

--use_logger {tensorboard,wandb}
Which program to use for logging.

--do_train Run the training procedure.
--do_test Run the testing procedure.
--load_weights LOAD_WEIGHTS

Loads the model weights from a given checkpoint
--load_from_checkpoint LOAD_FROM_CHECKPOINT

Loads the model weights and hyperparameters from a
given checkpoint.

-l {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --log {DEBUG,INFO,WARNING,ERROR,CRITICAL}
Set the logging level (default: 'Info').

-a ARCH, --arch ARCH model architecture: alexnet | densenet121 |
densenet161 | densenet169 | densenet201 | googlenet |
inception_v3 | mnasnet0_5 | mnasnet0_75 | mnasnet1_0 |
mnasnet1_3 | mobilenet_v2 | resnet101 | resnet152 |
resnet18 | resnet34 | resnet50 | resnext101_32x8d |
resnext50_32x4d | shufflenet_v2_x0_5 |
shufflenet_v2_x1_0 | shufflenet_v2_x1_5 |
shufflenet_v2_x2_0 | squeezenet1_0 | squeezenet1_1 |
vgg11 | vgg11_bn | vgg13 | vgg13_bn | vgg16 | vgg16_bn
| vgg19 | vgg19_bn | wide_resnet101_2 |

(continues on next page)
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(continued from previous page)

wide_resnet50_2 | efficientnet-b0 | efficientnet-b1 |
efficientnet-b2 | efficientnet-b3 | efficientnet-b4 |
efficientnet-b5 | efficientnet-b6 (default: resnet34)

-j N, --workers N number of data loading workers (default: 4)
--train_batch_size TRAIN_BATCH_SIZE

Batch size per GPU/CPU for training.
--val_batch_size VAL_BATCH_SIZE

Batch size per GPU/CPU for evaluation.
--test_batch_size TEST_BATCH_SIZE

Batch size per GPU/CPU for testing.
--momentum M momentum. Ranger optimizer suggests 0.95.
--weight_decay W weight decay (default: 1e-2)
-k K, --ranger_k K Ranger (LookAhead) optimizer k value (default: 6)
--optimizer_alpha N Optimizer alpha parameter (default: 0.999)
--optimizer_eps N Optimizer eps parameter (default: 1e-8)
--pretrained use pre-trained model
--random_split use random_split to create train and val set instead

of train and val folders
--relu_to_mish convert any relu activations to mish activations
--feature_extract {normal,advanced,none}

If `False` or `None`, finetune the whole model. When
`normal`, only update the reshaped layer params. When
`advanced`, use fastai version of feature extracting
(add fancy group of layers and only update this group
and BatchNorm)

-o OPTIMIZER, --optimizer OPTIMIZER
Optimizer to use (default=AdamW)
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CHAPTER

EIGHT

SLIDE CLASSIFIER API

8.1 Class Cluster Scikit

class lecture2notes.models.slide_classifier.class_cluster_scikit.Cluster(algorithm_name='kmeans',
num_centroids=20,
prefer-
ence=None,
damp-
ing=0.5,
max_iter=200)

add(vector, filename)
Adds a filename and its coresponding feature vector to the cluster object

calculate_best_k(max_k=50)
Implements elbow method to graph the cost (squared error) as a function of the number of
centroids (value of k) The point at which the graph becomes essentially linear is the optimal
value of k. Only works if algorithm is “kmeans”.

create_affinity_propagation(preference, damping, max_iter, store=True)
Create and fit an affinity propagation cluster

create_algorithm_if_none()
Creates algorithm if it has not been created (if it equals None) based on algorithm_name set in
__init__

create_kmeans(num_centroids, store=True)
Create and fit a kmeans cluster

get_closest_sample_filenames_to_centroids()
Return the sample indexes that are closest to each centroid. Ex: If [0,8] is returned then X[0] (X
is training data/vectors) is the closest point in X to centroid 0 and X[8] is the closest to centroid
1

get_labels()

get_move_list()
Creates a dictionary of file names and their coresponding centroid numbers

get_num_clusters()

get_vector_array()
Return a numpy array of the list of vectors stored in self.vectors

get_vectors()
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predict(array)
Wrapper function for algorithm.predict. Creates algorithm if it has not been created.

visualize(tensorboard_dir)
Creates tensorboard projection of cluster for simplified viewing and understanding

8.2 Custom nn.Modules

class lecture2notes.models.slide_classifier.custom_nnmodules.AdaptiveConcatPool2d(sz=None)
Layer that concats AdaptiveAvgPool2d and AdaptiveMaxPool2d https://docs.fast.ai/layers.html#
AdaptiveConcatPool2d

forward(x)
Defines the computation performed at every call.

Should be overridden by all subclasses.

Note: Although the recipe for forward pass needs to be defined within this function, one should
call the Module instance afterwards instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

training: bool

8.3 GradCAM

class lecture2notes.models.slide_classifier.grad_cam.BackPropagation(model)

forward(image)

generate()

class lecture2notes.models.slide_classifier.grad_cam.Deconvnet(model)
“Striving for Simplicity: the All Convolutional Net” https://arxiv.org/pdf/1412.6806.pdf Look at
Figure 1 on page 8.

class lecture2notes.models.slide_classifier.grad_cam.GradCAM(model, candi-
date_layers=None)

“Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization” https://
arxiv.org/pdf/1610.02391.pdf Look at Figure 2 on page 4

generate(target_layer)

class lecture2notes.models.slide_classifier.grad_cam.GuidedBackPropagation(model)
“Striving for Simplicity: the All Convolutional Net” https://arxiv.org/pdf/1412.6806.pdf Look at
Figure 1 on page 8.

lecture2notes.models.slide_classifier.grad_cam.get_device(cuda)

lecture2notes.models.slide_classifier.grad_cam.load_images(image_paths, input_size)

lecture2notes.models.slide_classifier.grad_cam.main(args)
Visualize model responses given multiple images
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lecture2notes.models.slide_classifier.grad_cam.occlusion_sensitivity(model,
images, ids,
mean=None,
patch=35,
stride=1,
n_batches=128)

“Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization” https://
arxiv.org/pdf/1610.02391.pdf Look at Figure A5 on page 17

Originally proposed in: “Visualizing and Understanding Convolutional Networks” https://arxiv.org/
abs/1311.2901

lecture2notes.models.slide_classifier.grad_cam.preprocess(image_path, input_size)

lecture2notes.models.slide_classifier.grad_cam.save_gradcam(filename, gcam,
raw_image,
paper_cmap=False)

lecture2notes.models.slide_classifier.grad_cam.save_gradient(filename, gradient)

lecture2notes.models.slide_classifier.grad_cam.save_sensitivity(filename, maps)

8.4 Learning Rate Finder

class lecture2notes.models.slide_classifier.lr_finder.ExponentialLR(optimizer,
end_lr,
num_iter,
last_epoch=-
1)

Exponentially increases the learning rate between two boundaries over a number of iterations.

Parameters

• optimizer (torch.optim.Optimizer) – wrapped optimizer.

• end_lr (float, optional) – the initial learning rate which is the lower boundary
of the test. Default: 10.

• num_iter (int, optional) – the number of iterations over which the test occurs.
Default: 100.

• last_epoch (int) – the index of last epoch. Default: -1.

get_lr()

class lecture2notes.models.slide_classifier.lr_finder.LRFinder(model, optimizer,
criterion,
device=None,
memory_cache=True,
cache_dir=None)

Learning rate range test.

The learning rate range test increases the learning rate in a pre-training run between two boundaries
in a linear or exponential manner. It provides valuable information on how well the network can be
trained over a range of learning rates and what is the optimal learning rate.

Parameters

• model (torch.nn.Module) – wrapped model.
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• optimizer (torch.optim.Optimizer) – wrapped optimizer where the defined
learning is assumed to be the lower boundary of the range test.

• criterion (torch.nn.Module) – wrapped loss function.

• device (str or torch.device, optional) – a string (“cpu” or “cuda”) with
an optional ordinal for the device type (e.g. “cuda:X”, where is the ordinal). Alter-
natively, can be an object representing the device on which the computation will take
place. Default: None, uses the same device as model.

• memory_cache (boolean) – if this flag is set to True, state_dict of model and op-
timizer will be cached in memory. Otherwise, they will be saved to files under the
cache_dir.

• cache_dir (string) – path for storing temporary files. If no path is specified,
system-wide temporary directory is used. Notice that this parameter will be ignored
if memory_cache is True.

Example

>>> lr_finder = LRFinder(net, optimizer, criterion, device="cuda")
>>> lr_finder.range_test(dataloader, end_lr=100, num_iter=100)

Cyclical Learning Rates for Training Neural Networks: https://arxiv.org/abs/1506.01186 fas-
tai/lr_find: https://github.com/fastai/fastai

plot(skip_start=10, skip_end=5, log_lr=True)
Plots the learning rate range test.

Parameters
• skip_start (int, optional) – number of batches to trim from the start. De-

fault: 10.
• skip_end (int, optional) – number of batches to trim from the start. Default:

5.
• log_lr (bool, optional) – True to plot the learning rate in a logarithmic scale;

otherwise, plotted in a linear scale. Default: True.

range_test(train_loader, val_loader=None, end_lr=10, num_iter=100, step_mode='exp',
smooth_f=0.05, diverge_th=5)

Performs the learning rate range test.
Parameters

• train_loader (torch.utils.data.DataLoader) – the training set data
laoder.

• val_loader (torch.utils.data.DataLoader, optional) – if None the
range test will only use the training loss. When given a data loader, the model
is evaluated after each iteration on that dataset and the evaluation loss is used.
Note that in this mode the test takes significantly longer but generally produces
more precise results. Default: None.

• end_lr (float, optional) – the maximum learning rate to test. Default: 10.
• num_iter (int, optional) – the number of iterations over which the test oc-

curs. Default: 100.
• step_mode (str, optional) – one of the available learning rate policies, linear

or exponential (“linear”, “exp”). Default: “exp”.
• smooth_f (float, optional) – the loss smoothing factor within the [0, 1[ inter-

val. Disabled if set to 0, otherwise the loss is smoothed using exponential smooth-
ing. Default: 0.05.

38 Chapter 8. Slide Classifier API

https://arxiv.org/abs/1506.01186
https://github.com/fastai/fastai


Lecture2Notes, Release 1.0.0

• diverge_th (int, optional) – the test is stopped when the loss surpasses the
threshold: diverge_th * best_loss. Default: 5.

reset()
Restores the model and optimizer to their initial states.

class lecture2notes.models.slide_classifier.lr_finder.LinearLR(optimizer, end_lr,
num_iter,
last_epoch=- 1)

Linearly increases the learning rate between two boundaries over a number of iterations.

Parameters

• optimizer (torch.optim.Optimizer) – wrapped optimizer.

• end_lr (float, optional) – the initial learning rate which is the lower boundary
of the test. Default: 10.

• num_iter (int, optional) – the number of iterations over which the test occurs.
Default: 100.

• last_epoch (int) – the index of last epoch. Default: -1.

get_lr()

class lecture2notes.models.slide_classifier.lr_finder.StateCacher(in_memory,
cache_dir=None)

retrieve(key)

store(key, state_dict)

8.5 Mish

lecture2notes.models.slide_classifier.mish.f_mish(input, inplace=False)
Applies the mish function element-wise: 𝑚𝑖𝑠ℎ(𝑥) = 𝑥 * 𝑡𝑎𝑛ℎ(𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥)) = 𝑥 * 𝑡𝑎𝑛ℎ(𝑙𝑛(1 +
𝑒𝑥𝑝(𝑥)))

class lecture2notes.models.slide_classifier.mish.mish(inplace=False)
Applies the mish function element-wise: 𝑚𝑖𝑠ℎ(𝑥) = 𝑥 * 𝑡𝑎𝑛ℎ(𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝑥)) = 𝑥 * 𝑡𝑎𝑛ℎ(𝑙𝑛(1 +
𝑒𝑥𝑝(𝑥)))

Shape:

• Input: (N, *) where * means, any number of additional dimensions

• Output: (N, *), same shape as the input

Examples

>>> m = mish()
>>> input = torch.randn(2)
>>> output = m(input)

forward(input)
Forward pass of the function.

training: bool
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8.6 Inference

lecture2notes.models.slide_classifier.inference.get_prediction(model, image,
percent=False, ex-
tract_features=True)

lecture2notes.models.slide_classifier.inference.initialize_model(arch, num_classes)

lecture2notes.models.slide_classifier.inference.load_model(model_path='model_best.ckpt')
Load saved model from model_path.

lecture2notes.models.slide_classifier.inference.load_model_deprecated(model_path='model_best.pth.tar')
Load saved model trained using old script (“.pth.tar” file extension is old format).

lecture2notes.models.slide_classifier.inference.transform_image(image,
input_size=224)

8.7 Slide Classifier Helpers

lecture2notes.models.slide_classifier.slide_classifier_helpers.convert_relu_to_mish(model)
Find all of the nn.ReLU activation functions in model and replace them with mish.

lecture2notes.models.slide_classifier.slide_classifier_helpers.plot_confusion_matrix(y_pred,
y_true,
classes,
nor-
mal-
ize=False,
ti-
tle='Confusion
Ma-
trix',
cmap=<matplotlib.colors.LinearSegmentedColormap
ob-
ject>,
save_path=None)

This function prints and plots the confusion matrix. Normalization can be applied by setting
normalize=True https://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_
matrix.html#sphx-glr-auto-examples-model-selection-plot-confusion-matrix-py.

8.8 Slide Classifier PyTorch

class lecture2notes.models.slide_classifier.slide_classifier_pytorch.SlideClassifier(hparams)
The main slide classifier model code.

static add_model_specific_args(parent_parser)

static calculate_stats(output, target)
Used for the training, validation, and testing steps to calculate various statistics.

Parameters
• output (torch.tensor) – the output from the model
• target (torch.tensor) – the ground-truth target classes

Returns a tuple of tensors in the form (accuracy, precision, recall, f_score)
Return type [tuple]
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configure_optimizers()
Create the optimizers and schedulers.

forward(*args, **kwargs)
Passes *args and **kwargs to self.classification_model since SlideClassifier is a
wrapper for the classification model.

get_input_size()
Uses the hparams.arch to return the image input size to the model.

initialize_model(num_classes)
Create the classification model. Modifies the standard models by adding extra layers to improve
performance if feature_extract is advanced.

Parameters num_classes (int) – the number of classes in the data (number of output
features)

Returns the modified pytorch model processed by the configuration options specified
Return type [pytorch model]

prepare_data()
Creates the PyTorch Datasets using datasets.ImageFolder and applying appropriate tran-
forms. If hparams.use_random_split is True then the dataset will be randomly split 80%
for training and 20% for testing. If hparams.use_random_split is True then the dataset folder
should contain a folder for each class. If it is False then there should be a folder for each split
(named “train” and “val”) where each split folder contains a folder for each class. ImageFolder
Documentation

This function will also run :meth:~`slide_classifier_pytorch.SlideClassifier.initialize_model`
with len(self.hparams.classes)) as the num_classes argument if the classification
model as not already been initialized in the __init__ function.

set_parameter_requires_grad(model)
This helper function sets the .requires_grad attribute of the parameters in the model to False when
we are feature extracting. By default, when we load a pretrained model all of the parameters have
.requires_grad=True, which is fine if we are training from scratch or finetuning. However, if we
are feature extracting and only want to compute gradients for the newly initialized layer then we
want all of the other parameters to not require gradients.

test_dataloader()
Return the validation dataloader. The test process uses the same data as validation but calculates
a classification report and displays a confusion matrix.

test_epoch_end(outputs)
Create confusion matrix and calculate a sklearn classification report.

test_step(batch, batch_idx)
Perform a test step. See the PyTorch Lightning documentation for test_step for more info.

train_dataloader()
Create train dataloader if it has not already been created, otherwise return the stored dataloader.

training: bool

training_step(batch, batch_idx)
Perform a training step. See the PyTorch Lightning Docs for more info.

val_dataloader()
Create validation (val) dataloader

static validation_epoch_end(outputs, log_prefix='val')
Compute average statistics after a validation epoch completes.
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validation_step(batch, batch_idx)
Perform a validation step. See the PyTorch Lightning documentation for validation_step for
more info.
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CHAPTER

NINE

SUMMARIZATION MODELS

Warning: This page discusses the actual models and algorithms used to summarize text. If you want to compare
the methods available for summarizing text as used in the End-To-End process please visit Combination and Sum-
marization. If you are interested in the code behind the models, would like to reproduce results, or want to adapt
upon the low-level summarization components, you’re in the right place.

Neural: The extractive summarizers are provided by HHousen/TransformerSum and the abstractive ones from hug-
gingface/transformers (abstractive was originally accomplished with HHousen/DocSum). Please see those repositories
for details on the exact implementation details of the models. Some of the architectures are HHousen’s, some are partly
HHousen’s, and many are from other research projects.

Non-Neural Algorithms: The sumy (Sumy GitHub) package provides some non-neural summarization algorithms,
mainly the methods for generic_extractive_sumy() such as lsa, luhn, lex_rank, text_rank, edmundson, and
random.

Note: The summa (Summa GitHub) package is used to extract keywords using the TextRank algorithm in
keyword_based_ext().

Note: All other models/algorithms are, to the best of my knowledge, novel and are directly implemented as part of
this project. See Combination and Summarization for details.
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CHAPTER

TEN

E2E GENERAL INFORMATION

The end-to-end approach. One command to take a video file and return summarized notes.

Run python main.py <path to video> to get a notes file. See Summarizing a lecture video for a brief introduction.

10.1 Overall Explanation

First, frames are extracted once every second. Each frame is classified using the slide classifier (see Overview). Next,
frames that were classified as slide are processed by a black border removal algorithm, which is a simple program that
crop to the largest rectangle in an image if the edge pixel values of the image are all close to zero. Thus, screen-captured
slide frames that have black bars on the sides from a presentation created with a 4:3 aspect ratio but recorded at 16:9
can be interpreted correctly.

Frames that were classified as presenter_slide are perspective cropped through feature matching and contour/hough
lines algorithms. This process removes duplicate slides and crops images from the presenter_slide class to only
contain the side. However, to clean up any duplicates that may remain and to find the best representation of each slide,
the slide frames are clustered using our custom segment clustering algorithm.

At this point, the process has identified the set of unique slides presented in the lecture video. The next step of the
pipeline is to process these slides by performing an SSA, which is an algorithm that extracts formatted text from each
slide. After that, figures are extracted from the slides and attached to the SSA (see Slide Structure Analysis (SSA)) for
each slide. A figure is an image, chart, table, or diagram. After the system has extracted the visual content, it begins
processing the audio. The audio is transcribed automatically using the Vosk small 36MB model.

After the audio is transcribed, the system has a textual representation of both visual and auditory data, which need to be
combined and summarized to create the final output. If the user desires notes then the SSA will be used for formatting,
otherwise, there are tens of different ways of combining and summarizing the audio and slide transcripts, which are
discussed in Combination and Summarization.

10.2 Script Descriptions

These descriptions are short and concise. For more information about some of the larger, more complicated files visit
their respective pages on the left.

• border_removal: The black border removal algorithm is a simple instruction set that finds the largest rectangle
in the image if the edge pixel values of the image are all < 𝛾 and then crops to that rectangle.

• cluster: Provides lecture2notes.end_to_end.cluster.ClusterFilesystem class, which clusters im-
ages from a directory and saves them to disk in folders corresponding to each centroid.
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• corner_crop_transform: Provides functions to detect the bounding box of a slide in a frame and au-
tomatically crop to that bounding box. The lecture2notes.end_to_end.corner_crop_transform.
all_in_folder() method is used by the main script. See Perspective Cropping & Corner Detection for more
information. This is one of the two components used to remove duplicate slides and crop presenter_slide im-
ages to only contain the slide. You can learn more about the overall perspective cropping process at Perspective
Cropping.

• figure_detection:: The figure extraction algorithm identifies and saves images, charts, tables, and diagrams
from slide frames so that they can be shown in the final summary. See Figure Detection Algorithm for more
information.

• frames_extractor: Provides lecture2notes.end_to_end.frames_extractor.extract_frames(),
which extracts frames from input_video_path at quality level quality (best quality is 2) every
extract_every_x_seconds seconds and saves them to output_path.

• helpers: A small file of helper functions to reduce duplicate code. See Helpers.

• imghash: Provides functions to detect near duplicate images using image hashing methods from the imagehash
library. lecture2notes.end_to_end.imghash.sort_by_duplicates() will create lists of similar images
and lecture2notes.end_to_end.imghash.remove_duplicates() will remove those duplicates and keep
the last file (when sorted alphanumerically descending)

• main: The master file that brings all of the components in this directory together by calling the functions provided
by the components. Implements a skip_to variable that can be set to skip to a certain step of the process. This
is useful if a pervious step completed but the overall process failed. The --help is located below.

• ocr: OCR processing uses the pytesseract (GitHub) package. “Python-tesseract is an optical character recogni-
tion (OCR) tool for python. That is, it will recognize and ‘read’ the text embedded in images. Python-tesseract is
a wrapper for Google’s Tesseract-OCR Engine.” This page has good information to improve results from tesser-
act. See ocr.all_in_folder() and lecture2notes.end_to_end.ocr.write_to_file().

• segment_cluster: SegmentCluster iterates through frames in order and splits based on large visual differ-
ences. These differences are measured by the cosine difference between the feature vectors (2nd to last layer
or right before the softmax) outputted by the slide classifier. This class behaves similarly to lecture2notes.
end_to_end.cluster.ClusterFilesystem in that it also provides extract_and_add_features() and
transfer_to_filesystem().

• sift_matcher:: One of the components used to remove duplicate slides and crop presenter_slide images to
only contain the slide. You can learn more about the sift_matcher at SIFT Matcher & Perspective Cropping
and the overall perspective cropping process at Perspective Cropping.

• slide_classifier: Provides lecture2notes.end_to_end.slide_classifier.classify_frames() which
automatically sorts images (the extracted frames) using the slide-classifier model. The inference script in
models/slide_classifier is used.

• spell_check: Contains the SpellChecker class, which can spell check a string with check() or a list of strings
with check_all(). With both functions, the best correction is returned.

• summarization_approaches: Many summarization models and algorithms for use with end_to_end/main.
py. The lecture2notes.end_to_end.summarization_approaches.cluster() is probably the most in-
teresting method from this file.

• transcript_downloader: Provides the lecture2notes.end_to_end.transcript_downloader.
TranscriptDownloader class, which downloads transcripts from YouTube using the YouTube API or
youtube-dl. youtube-dl is the recommended method since it does not require an API key and is significantly
more reliable than the YouTube API.

• youtube_api: Function to use YouTube API with key or client_secret.json. See youtube_api.
init_youtube().
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10.3 Main Script Help

Output of python -m lecture2notes.end_to_end.main --help:

usage: main.py [-h] [-s N] [-d PATH] [-id] [--custom_id CUSTOM_ID] [-rm]
[--extract_frames_quality EXTRACT_FRAMES_QUALITY]
[--extract_every_x_seconds EXTRACT_EVERY_X_SECONDS]
[--slide_classifier_model_path SLIDE_CLASSIFIER_MODEL_PATH]
[--east_path EAST_PATH] [-c {silence,speech,none}] [-rd]
[-cm {normal,segment}]
[-ca {only_asr,concat,full_sents,keyword_based}]
[-sm {none,full_sents} [{none,full_sents} ...]]
[-sx {none,cluster,lsa,luhn,lex_rank,text_rank,edmundson,random}]
[-sa {none,presumm,sshleifer/distilbart-cnn-12-6,patrickvonplaten/bert2bert_cnn_daily_
→˓mail,facebook/bart-large-cnn,allenai/led-large-16384-arxiv,patrickvonplaten/led-large-
→˓16384-pubmed,google/pegasus-billsum,google/pegasus-cnn_dailymail,google/pegasus-pubmed,
→˓google/pegasus-arxiv,google/pegasus-wikihow,google/pegasus-big_patent}]
[-ss {structured_joined,none}]
[--structured_joined_summarization_method {none,abstractive,extractive}]
[--structured_joined_abs_summarizer {presumm,sshleifer/distilbart-cnn-12-6,
→˓patrickvonplaten/bert2bert_cnn_daily_mail,facebook/bart-large-cnn,allenai/led-large-
→˓16384-arxiv,patrickvonplaten/led-large-16384-pubmed,google/pegasus-billsum,google/
→˓pegasus-cnn_dailymail,google/pegasus-pubmed,google/pegasus-arxiv,google/pegasus-
→˓wikihow,google/pegasus-big_patent}]
[--structured_joined_ext_summarizer {lsa,luhn,lex_rank,text_rank,edmundson,random}]
[-tm {sphinx,google,youtube,deepspeech,vosk,wav2vec}]
[--transcribe_segment_sentences]
[--custom_transcript_check CUSTOM_TRANSCRIPT_CHECK]
[-sc {ocr,transcript} [{ocr,transcript} ...]] [--video_id ID]
[--transcribe_model_dir DIR] [--abs_hf_api]
[--abs_hf_api_overall] [--tensorboard PATH]
[--bart_checkpoint PATH] [--bart_state_dict_key PATH]
[--bart_fairseq] [-l {DEBUG,INFO,WARNING,ERROR,CRITICAL}]
DIR

End-to-End Conversion of Lecture Videos to Notes using ML

positional arguments:
DIR path to video

optional arguments:
-h, --help show this help message and exit
-s N, --skip_to N set to > 0 to skip specific processing steps
-d PATH, --process_dir PATH

path to the proessing directory (where extracted
frames and other files are saved), set to "automatic"
to use the video's folder (default: ./)

-id, --auto_id automatically create a subdirectory in `process_dir`
with a unique id for the video and change
`process_dir` to this new directory

--custom_id CUSTOM_ID
same as `--auto_id` but will create a subdirectory
using this value instead of a random id

(continues on next page)
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(continued from previous page)

-rm, --remove remove `process_dir` once conversion is complete
--extract_frames_quality EXTRACT_FRAMES_QUALITY

ffmpeg quality of extracted frames
--extract_every_x_seconds EXTRACT_EVERY_X_SECONDS

how many seconds between extracted frames
--slide_classifier_model_path SLIDE_CLASSIFIER_MODEL_PATH

path to the slide classification model checkpoint
--east_path EAST_PATH

path to the EAST text detector model
-c {silence,speech,none}, --chunk {silence,speech,none}

split the audio into small chunks on `silence` using
PyDub or voice activity `speech` using py-webrtcvad.
set to 'none' to disable. Recommend 'speech' for
DeepSpeech and 'none' for Vosk. (default: 'none').

-rd, --remove_duplicates
remove duplicate slides before perspective cropping
and before clustering (helpful when `--cluster_method`
is `segment`)

-cm {normal,segment}, --cluster_method {normal,segment}
which clustering method to use. `normal` uses a
clustering algorithm from scikit-learn and `segment`
uses the special method that iterates through frames
in order and splits based on large visual differences

-ca {only_asr,concat,full_sents,keyword_based}, --combination_algo {only_asr,concat,full_
→˓sents,keyword_based}

which combination algorithm to use. more information
in documentation.

-sm {none,full_sents} [{none,full_sents} ...], --summarization_mods {none,full_sents} [
→˓{none,full_sents} ...]

modifications to perform during summarization process.
each modification is run between the combination and
extractive stages. more information in documentation.

-sx {none,cluster,lsa,luhn,lex_rank,text_rank,edmundson,random}, --summarization_ext
→˓{none,cluster,lsa,luhn,lex_rank,text_rank,edmundson,random}

which extractive summarization approach to use. more
information in documentation.

-sa {none,presumm,sshleifer/distilbart-cnn-12-6,patrickvonplaten/bert2bert_cnn_daily_
→˓mail,facebook/bart-large-cnn,allenai/led-large-16384-arxiv,patrickvonplaten/led-large-
→˓16384-pubmed,google/pegasus-billsum,google/pegasus-cnn_dailymail,google/pegasus-pubmed,
→˓google/pegasus-arxiv,google/pegasus-wikihow,google/pegasus-big_patent}, --
→˓summarization_abs {none,presumm,sshleifer/distilbart-cnn-12-6,patrickvonplaten/
→˓bert2bert_cnn_daily_mail,facebook/bart-large-cnn,allenai/led-large-16384-arxiv,
→˓patrickvonplaten/led-large-16384-pubmed,google/pegasus-billsum,google/pegasus-cnn_
→˓dailymail,google/pegasus-pubmed,google/pegasus-arxiv,google/pegasus-wikihow,google/
→˓pegasus-big_patent}

which abstractive summarization approach/model to use.
more information in documentation.

-ss {structured_joined,none}, --summarization_structured {structured_joined,none}
An additional summarization algorithm that creates a
structured summary with figures, slide content (with
bolded area), and summarized transcript content from
the SSA (Slide Structure Analysis) and transcript JSON

(continues on next page)
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(continued from previous page)

data.
--structured_joined_summarization_method {none,abstractive,extractive}

The summarization method to use during
`structured_joined` summarization.

--structured_joined_abs_summarizer {presumm,sshleifer/distilbart-cnn-12-6,
→˓patrickvonplaten/bert2bert_cnn_daily_mail,facebook/bart-large-cnn,allenai/led-large-
→˓16384-arxiv,patrickvonplaten/led-large-16384-pubmed,google/pegasus-billsum,google/
→˓pegasus-cnn_dailymail,google/pegasus-pubmed,google/pegasus-arxiv,google/pegasus-
→˓wikihow,google/pegasus-big_patent}

The abstractive summarizer to use during
`structured_joined` summarization (to create summaries
of each slide) if
`structured_joined_summarization_method` is
'abstractive'.

--structured_joined_ext_summarizer {lsa,luhn,lex_rank,text_rank,edmundson,random}
The extractive summarizer to use during
`structured_joined` summarization (to create summaries
of each slide) if
`--structured_joined_summarization_method` is
'extractive'.

-tm {sphinx,google,youtube,deepspeech,vosk,wav2vec}, --transcription_method {sphinx,
→˓google,youtube,deepspeech,vosk,wav2vec}

specify the program that should be used for
transcription. CMU Sphinx: use pocketsphinx Google
Speech Recognition: probably will require chunking
(online, free, max 1 minute chunks) YouTube: download
a video transcript from YouTube based on `--video_id`
DeepSpeech: Use the deepspeech library (fast with good
GPU) Vosk: Use the vosk library (extremely small low-
resource model with great accuracy, this is the
default) Wav2Vec: State-of-the-art speech-to-text
model through the `huggingface/transformers` library.

--transcribe_segment_sentences
Disable DeepSegment automatic sentence boundary
detection. Specifying this option will output
transcripts without punctuation.

--custom_transcript_check CUSTOM_TRANSCRIPT_CHECK
Check if a transcript file (follwed by an extension of
vtt, srt, or sbv) with the specified name is in the
processing folder and use it instead of running
speech-to-text.

-sc {ocr,transcript} [{ocr,transcript} ...], --spell_check {ocr,transcript} [{ocr,
→˓transcript} ...]

option to perform spell checking on the ocr results of
the slides or the voice transcript or both

--video_id ID id of youtube video to get subtitles from. set
`--transcription_method` to `youtube` for this
argument to take effect.

--transcribe_model_dir DIR
path containing the model files for Vosk/DeepSpeech if
`--transcription_method` is set to one of those
models. See the documentation for details.

(continues on next page)
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(continued from previous page)

--abs_hf_api use the huggingface inference API for abstractive
summarization tasks

--abs_hf_api_overall use the huggingface inference API for final overall
abstractive summarization task

--tensorboard PATH Path to tensorboard logdir. Tensorboard not used if
not set. Tensorboard only used to visualize cluster
primarily for debugging.

-l {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --log {DEBUG,INFO,WARNING,ERROR,CRITICAL}
Set the logging level (default: 'Info').
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ELEVEN

COMBINATION AND SUMMARIZATION

Once the system has a plain text representation of the visual and auditory information portrayed in the lecture, it can
begin to summarize and create the final notes. We break this into a four-stage process: combination, modification,
extractive summarization, and abstractive summarization. Some of these steps can be turned off completely. For
example, it is possible to combine the two transcripts and then summarize the result using an abstractive model, thus
skipping the modifications and extractive summarization steps. The word “transcripts” in this section refers to the audio
transcript and text content extracted from the slides.

11.1 Structured Joined Summarization

The structured joined summarization method is separate from the four-stage process. This method summarizes slides
using the SSA (see Slide Structure Analysis (SSA)) and audio transcript to create an individual summary for each slide.
The words spoken from the beginning of one slide to the start of the next to the nearest sentence are considered the
transcript that belongs to that slide. Either DeepSpeech, Vosk, or manual transcription must be used to summarize
using structured_joined because they are the only models that output the start times of each word spoken. The
transcript that belongs to each slide is independently summarized using extractive (see Extractive Summarization) or
abstractive summarization (see Abstractive Summarization). The content from each slide is formatted following the
SSA and presented to the user. Only paragraphs on the slide longer than three characters are included. The result
contains the following for each unique slide identified: a summary of the words spoken while that slide was displayed,
the formatted content on the slide, an image of the slide, and extracted figures from the slide.

You can learn more in the docstring for the lecture2notes.end_to_end.summarization_approaches.
structured_joined_sum() function.

11.2 Combination

There are five methods of combining the transcripts:

1. only_asr: only uses the audio transcript (deletes the slide transcript)

2. only_slides: only uses the slides transcript (deletes the audio transcript)

3. concat: appends audio transcript to slide transcript

4. full_sents: audio transcript is appended to only the complete sentences of the slide transcript

5. keyword_based: selects a certain percentage of sentences from the audio transcript based on keywords found
in the slides transcript
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11.2.1 Full Sentences Algorithm

Complete sentences are detected by tokenizing the input text using a Spacy model and then selecting sentences that
end with punctuation and contain at least one subject, predicate, and object (two nouns and one verb). If the number
of tokens in the text containing only complete sentences is greater than a percentage of the number of tokens in the
original text then the algorithm returns the complete sentences, otherwise, it will return the original text. This check
ensures that a large quantity of content is not lost. By default, the cutoff percentage is 70%. You can view the code
here: lecture2notes.end_to_end.summarization_approaches.full_sents().

11.2.2 Keyword Based Algorithm

Since the text extracted from slides may contain many incomplete ideas that the presenter clarifies through speech, it
may be necessary to completely disregard the slide transcript. However, in the case where the slide transcript contains
a loose connection of ideas we view it as an incomplete summary of the lecture. Thus, the information in the slide
transcript can be used to select the most important sentences from the audio transcript, thus preventing the loss of
significant amounts of information.

First, keywords are extracted from the slide transcript using TextRank. Next, this list of keywords is used as the vo-
cabulary in the creation of a TF-IDF (term frequency-inverse document frequency) vectorizer. The TF-IDF vectorizer
is equivalent to converting the voice transcript to a matrix of token counts followed by performing the TF-IDF trans-
formation. After the TF-IDF vectorizer is created, the sentences are extracted from the transcript text using a Spacy
model. Finally, the document term matrix is created by fitting the TF-IDF vectorizer on the sentences from the tran-
script text and then transforming the transcript text sentences using the fitted vectorizer. Next, the algorithm calculates
the singular value decomposition (SVD), which is known as latent semantic analysis (LSA) in the context of TF-IDF
matrices, of the document term matrix. To compute the ranks of each sentence we pass Σ and 𝑉 to the rank compu-
tation algorithm, which for each row vector in the transposed 𝑉 matrix finds the sum of 𝑠2 * 𝑣2 where 𝑠 is the row of
Σ and 𝑣 is the column of 𝑉 . Finally, the algorithm selects the sentences in the top 70% sorted by rank. The sentences
are sorted by their original position in the document to ensure the order of the output sentences follows their order in
the input document.

11.3 Modifications

Modifications change the output of the combination algorithm before it is sent to the summarization stages. The only
modification is a function that will extract the complete sentences from the combined audio and slide transcript. By de-
fault, this modification is turned off. Importantly, the modification framework is extendable so that future modifications
can be implemented easily.

11.4 Extractive Summarization

There are two high-level extractive summarization methods: cluster, an advanced novel algorithm, and generic,
which is a collection of several standard extractive summarization algorithms such as TextRank, LSA, and Edmundson.
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11.4.1 The Cluster Method

The cluster algorithm extracts features from the text, clusters based on those features, and summarizes each cluster.

Feature extraction can be done in four ways:

1. neural_hf: Uses a large transformer model (RoBERTa by default) to extract features.

2. neural_sbert: Uses special BERT and RoBERTa models fine-tuned to extract sentence embeddings. This is
the default option.

3. spacy: Uses the en_core_web_lg (large model is preferred over a smaller model since large models have “read”
word vectors) Spacy model to loop through sentences and store their “vector” values, which is an average of the
token vectors.

4. bow: The name “bow” stands for “bag of words.” This method is fast since it is based on word frequencies
throughout the input text. The implementation is similar to the combination keyword based algorithm (see Key-
word Based Algorithm) but instead of using keywords from another document, the keywords are calculated using
the TF-IDF vectorizer. The TF-IDF-weighted document-term matrix contains the features that are clustered.

The feature vectors are clustered using the KMeans algorithm. The user must specify the number of clusters they want,
which corresponds to the number of topics discussed in the lecture. Mini batch KMeans is supported if a reduction in
computation time is desired and obtaining slightly worse results is acceptable.

Summarization can be done in two ways:

1. extractive: Computes the SVD of the document-term matrix and calculates ranks using the sentence rank
computation algorithm. This option requires that features were extracted using bow because this method needs
the document-term matrix produced during bow feature extraction in order to compute sentence rankings.

2. abstractive: Summarizes text using a seq2seq transformer model trained on abstractive summarization. The
default model is a distilled version of BART.

The clusters are summarized sequentially. However, when using the extractive summarization method, the ranks of
all sentences are only calculated once before clustering. Before summarization, the sentences and corresponding ranks
are grouped by cluster centroid. The TF-IDF and ranks are calculated at the document level, not the cluster level.

Automatic Cluster Title Generation

There is an additional optional stage of the cluster extractive summarization method that will create titles for each
cluster. This is accomplished by summarizing each cluster twice: once for the actual summary and again to create the
title. Since titles are much shorter than the content, a seq2seq transformer trained on the XSum dataset is used (BART is
the default). XSum contains documents and one-sentence news summaries answering the question “What is the article
about?”. To encourage short titles, when decoding the model output of the cluster we set the minimum length to one
token and the maximum to ten tokens. This produces subpar titles but, the structured joined summarization method
(see Structured Joined Summarization) solves this problem.

11.4.2 The Generic Method

There are six generic extractive summarization methods: lsa, luhn, lex_rank, text_rank, edmundson, and
random. Random selects sentences from the input document at random.
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11.5 Abstractive Summarization

The abstractive summarization stage is applied to the result of the extractive summarization stage. If extractive sum-
marization was disabled then abstractive summarization simply transforms the result of the modifications stage.

This stage of the summarization steps passes the text of the previous step through a seq2seq transformer model and
returns the result. Multiple seq2seq models can be used to summarize including TransformerSum, BART, PEGASUS,
T5, PreSumm (how TransformerSum improves PreSumm).
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CHAPTER

TWELVE

PERSPECTIVE CROPPING

To improve the SSA (see Slide Structure Analysis (SSA)) and the set of slides shown to the user, the frames classified
as presenter_slide need to be cropped to only contain the slide. Two main algorithms were created to accomplish
this: feature matching and corner crop transform.

12.1 SIFT Matcher & Perspective Cropping

The feature matching algorithm iterates through the slide and presenter_slide frames in chronological order.
When the class switches, the algorithm begins matching using Oriented FAST and Rotated BRIEF (ORB) (which
performs the same task as Scale Invariant Feature Transform (SIFT) but at two orders of magnitude the speed) for feature
detection/description and Fast Library for Approximate Nearest Neighbors (FLANN) for matching. If the number of
matched features is above a threshold then the images are considered to contain the same slide. The algorithm then
continues detecting duplicates based on the number of feature matches until another slide frame is encountered. The
slide or presenter_slide frame with the most content is kept. If the best frame is a presenter_slide then the
RANSAC transformation will be used to crop the image to only contain the slide.

Note: The main function is lecture2notes.end_to_end.sift_matcher.match_features()

12.1.1 Content Detector

The content detector determines if and how much content is added between two images. The algorithm dilates both
images and finds contours. It then computes the total area of those contours. If 𝛾% more than the area of the first
image’s contours is greater than the area of the second image’s contours then it is assumed more content is added. The
difference in area is the amount of content added.

Note: The main function is lecture2notes.end_to_end.sift_matcher.is_content_added()
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12.1.2 Camera Motion Detection

The camera motion detection algorithm detects camera movement between two frames by tracking features along the
borders of the image. Only the borders are used because the center of the image will contain a slide. Tracking features of
the slide is not robust since those features will disappear when the slide changes. Furthermore, features are not found in
the bottom border because presenter_slide images may have the peoples’ heads at the bottom, which will move and
do not represent camera motion. Features are identified using ShiTomasi Corner Detection. The Lucas Kanade optical
flow is calculated between consecutive frames and the average distance of all features is the total camera movement.
If the camera moves more than 10 pixels, then there is assumed to be camera movement. If the camera doesn’t move
then the feature matching algorithm will automatically crop each presenter_slide frame even if it does not have a
matching slide frame.

Note: The main function is lecture2notes.end_to_end.sift_matcher.does_camera_move()

12.2 Corner Crop Transform

Located on its own page here: Perspective Cropping & Corner Detection.

Note: The main function is lecture2notes.end_to_end.corner_crop_transform.crop()
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THIRTEEN

DUPLICATE IMAGE REMOVAL

The system uses a variety of methods to remove duplicate slides and obtain a set of unique frames containing the one best
representation of each slide in the presentation. One method that is applied at various steps of the procedure (during
black border removal, perspective crop, and clustering) is image hashing. Standard hashing algorithms will output
completely different hashes on images that differ by one-byte but still depict the same content. Image hashing algorithms
produce similar output hashes given similar inputs. The system supports 4 hashing methods: average, perception (the
default), difference, and wavelet hashing. These algorithms analyze the image structure based on luminance (without
color information). This process will only remove extremely similar images and thus can safely be applied without
any false-positives. However, since the presenter moving slightly will cause the algorithm to detect two unique images
even though they contain the same slide, we employ clustering (see Slide Clustering) and feature matching (see SIFT
Matcher & Perspective Cropping) algorithms.
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CHAPTER

FOURTEEN

FIGURE DETECTION ALGORITHM

The figure extraction algorithm identifies and saves images, charts, tables, and diagrams from slide frames so that they
can be shown in the final summary. Two sub-algorithms are used during figure extraction, each of which specializes
in identifying particular figures. The large box detection algorithm identifies images that have a border, such
as tables, by performing canny edge detection, applying a small dilation, and searching for rectangular contours that
meet a size threshold. The large dilation detection algorithm performs a very large dilation on the canny edge
map, computes contours, and finally approximates bounding boxes that meet a size and aspect ratio threshold. This
algorithm specializes in locating images without borders since large box detection will not detect contours that
do not closely resemble rectangles.

Text and color checks checks are applied as part of the large dilation detection algorithm. For each potential
figure, the text check calculates the area of text within the figure. Before identifying any figures, the bounding boxes of
text within the image are determined using the EAST (Efficient and Accurate Scene Text Detector) text detection algo-
rithm. Then, the overlapping area between the potential figure and each text bounding box is calculated and summed.
If the area of the text is lower than a percentage of the total potential figure area, then the check passes. The color check
simply checks if the image contains color even if it has red, green, and blue color bands by computing the mean of
squared errors.

Finally, two checks are applied to all potential figures, regardless of which algorithm proposed them. The first is an
overlapping area check. The overlapping area between every combination of two potential figures is calculated. If one
figure overlaps another, then the larger figure is kept since it likely contains the smaller one. The second check ensures
the complexity of the figure is above a threshold by calculating Shannon Entropy.

Extracted figures are attached to their respective slide in the slide structure analysis.

You can learn more about figure detection in the API documentation. Please see lecture2notes.end_to_end.
figure_detection.detect_figures()
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CHAPTER

FIFTEEN

SLIDE STRUCTURE ANALYSIS (SSA)

Note: The main function to perform a slide strucutre analysis is lecture2notes.end_to_end.
slide_structure_analysis.analyze_structure()

The SSA algorithm extracts formatted text from each slide using OCR, stroke width, and the height of text bounding
boxes. The SSA process identifies the title as well as bold, normal, and small/footer text. First, the algorithm performs
OCR using Tesseract which outputs text with metadata such as the block, paragraph, line, and word number. This is
used to identify individual bullet points that may exist on the slide. Tesseract also provides the location and size of the
bounding box for each identified word, which is used to determine the stroke width of each word. Next, the words are
grouped into their respective lines and the text classification algorithm is applied. The result is saved line by line with
the text and its predicted category. All Tesseract outputs are spell checked with SymSpell, a symmetric delete spelling
correction algorithm.

The text classification algorithm identifies a line of text as bold if it has above-average stroke width or above-average
height. A line will be identified as footer text if the stroke width is below average and the height is below average. It
is worse to misidentify normal text as footer text than footer text as normal text because the former causes a loss
of content in the created notes. If a line of text does not meet either of the aforementioned checks, it is classified as
normal. Both checks (height and stroke width) compare against their respective averages times a scaling factor.

The stroke width algorithm takes an input image, applies Ostu’s threshold, computes the distance transformation of the
image, identifies peaks in intensity, and returns the average of those peaks.

15.1 SSA Title Identification

The SSA title identification algorithm determines the title of an input slide given the Tesseract OCR output and image
data. The first paragraph will be classified as a title if it meets the following criteria:

1. The mean top y coordinate of the text bounding boxes is in the upper third of the image.

2. The mean of the x coordinate of the text bounding boxes is less than the 77% of the image width.

3. The number of characters is greater than 3.

4. The mean stroke width of the paragraph is greater than the mean stroke width of all the content on the slide plus
one standard deviation.

5. The mean bounding box height of the paragraph is greater than the mean high of all the content on the slide.

If there is only one block and paragraph then the slide might only contain the title. If this situation occurs, the stroke
width and height checks are disabled because the averages of all content will only account for the title if these checks
were left enabled.
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CHAPTER

SIXTEEN

SLIDE CLUSTERING

Clustering is used to group slides that contain the same content. We implement two main methods of clustering:
normal algorithms (Affinity Propagation and KMeans) and our novel segment approach, which is the default. By
grouping slides, the system is capable of choosing the frame that best represents each group.

16.1 Normal Algorithms

When the normal mode is selected, if the number of slides is specified by the user KMeans will be used, otherwise
Affinity Propagation will be used. Features are extracted from the layer before pooling for all model architectures.
KMeans and Affinity Propagation select the frame closest to the centroid.

Relevant Classes:

1. lecture2notes.end_to_end.cluster.ClusterFilesystem

2. lecture2notes.models.slide_classifier.class_cluster_scikit.Cluster

16.2 Segment Method

The segment clustering method iterates chronologically through extracted frames that have been filtered and trans-
formed by the perspective cropping (see Section ref{Perspective Cropping}) algorithm. The algorithm marks splitting
points based on large visual differences, which are measured by the cosine similarity between the feature vectors ex-
tracted from the slide classifier. A split is marked when the difference between two frames is greater than the mean of
the differences across all frames.

Relevant Classes:

1. lecture2notes.end_to_end.segment_cluster.SegmentCluster
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CHAPTER

SEVENTEEN

TRANSCRIBE (SPEECH-TO-TEXT)

API Documentation: Transcribe

The transcribe module contains the features necessary to convert a wave file to text.

There are 6 methods, which rely on 4 libraries, of transcribing audio implemented in this module. Additionally, 2
chunking algorithms are supported.

The mixed performance of DeepSegment combined with the inaccuracies of current STT software results in subpar
performance overall in the automatic creation of transcripts. Ideally, the user will provide a transcript. If not, then
summarization methods that use the transcript will be negatively impacted since summarization models rely on correct
grammatical structures.

17.1 Chunking

Chunking increases speed of voice-to-text by reducing the amount of audio without speech.

• Voice Activity: Uses the WebRTC Voice Activity Detector (VAD) which is “reportedly one of the best VADs
available, being fast, modern, and free.” The python bindings to the WebRTC VAD API are provided by
wiseman/py-webrtcvad. This algorithm is implemented in the chunk_by_speech() function. It produces
segments that can be transcribed with process_segments() using DeepSpeech, Vosk, or Wav2Vec2.

• Noise Activity: Detects and removes segments of audio that are significantly below the average loudness of the
file. This algorithm is implemented in chunk_by_silence() and it writes chunks (wave files that are parts of
the original file that contain noise) to disk. process_chunks() runs transcription on every file in a directory.
It can be used in conjunction with chunk_by_silence() to transcribe all the chunks and return a merged
transcript.

Note: Chunking is necessary for the google method (see Transcribing Methods) for long audio files since Google
Speech Recognition will time out if the file size is too large.
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17.2 Transcribing Methods

Note: Throughout this section google refers to “Google Speech Recognition” (free) and not the Google Cloud Speech
API (paid). It is my understanding that “Google Speech Recognition” is deprecated and could disappear anytime.
“Google Speech Recognition” was not tested but the “Google Cloud Speech API” was tested so in the results “Google
STT” refers to the paid “Google Cloud Speech API.”

The recommended method is Vosk (small model) since it works offline (google does not), has fantastic accuracy (1st
or 2nd best depending on model used), is actively maintained (sphinx and google are dated), is completely open
source (google is proprietary), is the most reliable (google frequently times out and sphinx is difficult to work with),
and doesn’t require a GPU (DeepSpeech does utilize a GPU). To download the recommended model run the commands
under 4. Vosk.

You can specify the transcription method you like using the --transcription_method option with the end_to_end/
main.py script. Some methods require a model to be loaded. For those methods you should set the
--transcribe_model_dir to the directory containing the model. For example, the default is to use the Vosk
small model so the --transcription_method defaults to vosk and the --transcribe_model_dir defaults to
./vosk-models/vosk-model-en-us-small-0.3/.

17.2.1 1. YouTube

lecture2notes.transcribe.transcribe_main.get_youtube_transcript(). This method only works if the
lecture to be summarized is a YouTube video that contains manually added captions.

Fig. 1: You can tell if a video contains manual captions if it contains the CC icon as shown above.

This method downloads the transcript for the specified language directly from YouTube using either the YouTube
API (get_transcript_api()) or youtube-dl (get_transcript_ytdl()). Both methods are part of the
TranscriptDownloader class.

The download() function provides easy access to both of these download options.
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Note: The YouTube API requires an API key. You can find more information about how to obtain a key for free from
Google Developers.

Important: Using youtube-dl is recommended over the YouTube API because it does not require an API key and
is significantly more reliable than the YouTube API.

17.2.2 2. General: Sphinx and Google

The sphinx and google methods use the SpeechRecognition library to access pockersphinx-python and Google
Speech Recognition, respectively. These methods are grouped together in the transcribe_audio_generic() func-
tion because the SpeechRecognition library simplifies the differences to one line. The method argument allows the
switching between both methods.

17.2.3 3. DeepSpeech

The deepspeechmethod uses the Mozilla DeepSpeech library, which achieves very good accuracy on the LibriSpeech
clean test corpus (the current model accuracy can be found on the latest release page.

The DeepSpeech architecture was created by Baidu in 2014. Project DeepSpeech was created by Mozilla (the creators
of the popular Firefox web browser) to provide the open source community with an updated Speech-To-Text engine.

In order to use this method in the end_to_end/main.py script, the latest DeepSpeech model needs to be downloaded
(the .pbmm acoustic model and the scorer) from the releases page. Mozilla provides code to download and extract the
model on the project’s documentation. You can rename these files as long as the extensions remain the same. When
using the end_to_end/main.py script you only have to specify the directory containing both files (the directory
name is not important but deepspeech-models is descriptive). See Installation for more details about downloading the
deepspeech models.

Example Folder Structure:

deepspeech-models/
deepspeech-0.7.1-models.pbmm
deepspeech-0.7.1-models.scorer

17.2.4 4. Vosk

The vosk method is implemented in the transcribe_audio_vosk() function. It uses the vosk library.

In order to use this method in the end_to_end/main.py script, you need to download one of the models from alpha-
cephei’s website at https://alphacephei.com/vosk/models (Google Drive Mirror).

These commands will download the recommended model and put it in the expected location:

conda activate lecture2notes
gdown https://drive.google.com/uc?id=1cjgVxc_NJUYapxEJ2xv-t61nKhJhKs-M
unzip vosk-model-en-us-small-0.3.zip
mkdir vosk-models/
mv vosk-model-en-us-small-0.3 ./vosk-models/vosk-model-en-us-small-0.3/
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17.2.5 5. Wave2Vec2

The Wav2Vec2 model was proposed in wav2vec 2.0: A Framework for Self-Supervised Learning of Speech Represen-
tations by Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli.

The abstract from the paper is the following:

“We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning
on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec
2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent
representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on
the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous
state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data
and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech
recognition with limited amounts of labeled data.”

The implementation in lecture2notes uses the huggingface/transformers package. You can learn more by reading the
code for the transcribe_audio_wav2vec() function. The wav2vec2 model will automatically be downloading upon
usage thanks to huggingface/transformers. The default model key to be downloaded from the model hub is facebook/
wav2vec2-base-960h. You can also download the model manually from this Google Drive mirror

17.3 Experiment Results

We tested the performance of DeepSpeech, Sphinx, several Vosk models, and Google’s paid STT API on 43 lecture
videos from the slide classifier dataset. These videos were from MIT OpenCourseWare and had human-written tran-
scripts attached. We used the YouTube API to fetch the transcripts. We then computed the Word Error Rate (WER),
Match Error Rate (MER), and Word Information Lost (WIL). The tests were performed on an Intel i7-6700HQ CPU
and a Mobile Nvidia GTX-1060-6GB GPU.

Model WER MER WIL LS TC
WER1

Processing
Time

DeepSpeech (chunking) 43.01 41.82 59.04 5.97 4 hours
DeepSpeech 44.44 42.98 59.99 5.97 20 hours
Google STT (“default”
model)

34.43 33.14 49.05 12.23 20 minutes2

Wav2Vec2 39.38 36.27 54.43 2.60 40 minutes
Sphinx was not tested because it is between 6x-18x slower than other models.
Vosk small-0.3 35.43 33.64 50.84 15.34 8.5 hours
Vosk daanzu-20200905 33.67 31.87 48.28 7.08 5.5 hours
Vosk aspire-0.2 41.38 38.44 56.35 13.64 19 hours
Vosk aspire-0.2 (chunking) 41.45 38.65 56.56 13.64 19 hours

The WER on our test set of lecture audio recordings is much higher than the LibriSpeech baseline. This is because
LibriSpeech contains clean audio recorded by professional microphones while most lecture recordings do not have
access to this type of equipment. The Vosk small-0.3model is the smallest model and the Vosk daanzu-20200905
model is both the fastest and most accurate model. Of the open-source models we tested, DeepSpeech and Wav2Vec2
are only ones that run on the GPU, which restricts the environments in which they can be used. Chunking is a necessity
with the DeepSpeech model because it results in a 6.67x improvement in speed and about 1.4 percentage point decrease
in WER.

1 “LS TC WER” stands for LibriSpeech test-clean WER (Word Error Rate).
2 Google STT ran in parallel.
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Google’s STT model was able to perform about 20% better than DeepSpeech (measured by WER) but was still 0.76
percentage points behind Vosk daanzu-20200905. Google’s STT model was able to run much faster than any open-
source model because multiple files were processed simultaneously. However, Google’s services are proprietary and
cost money while DeepSpeech, Sphinx, and Vosk are open-source, free, and, in some cases, more accurate. The open-
source models can be parallelized, but were not for the sake of simplicity.

Despite its size, the Vosk small-0.3 model is the second most accurate (measured by WER) out of the open-
source models. This model ran about 2x faster than both DeepSpeech and the Vosk aspire-0.2` model. The
``Vosk small-0.3 model is only 1.00 and 1.76 percentage points worse than Google’s STT service and Vosk
daanzu-20200905 respectively. Chunking does not improve the performance or speed of Vosk because it is meant for
streaming ASR instead of transcribing an entire audio file.

17.4 Script Descriptions

• transcribe_main: Implements transcription using 6 different methods from 4 libraries and other miscellaneous
functions related to audio transcription, including audio reading, writing, extraction, and conversion.

• webrtcvad_utils: Implements functions to filter out non-voiced sections from audio files. The primary function
is vad_segment_generator(), which accepts an audio path and returns segments of audio with voice.

• mic_vad_streaming: Streams from microphone to DeepSpeech, using Voice Activity Detection (VAD) provided by webrtcvad. This is essentially the example file from mozilla/DeepSpeech-examples.

– To select the correct input device, the code below can be used. It will print a list of devices and
associated parameters as detected by pyaudio.

import pyaudio
p = pyaudio.PyAudio()
for i in range(p.get_device_count()):

print(p.get_device_info_by_index(i))

– Output of python mic_vad_streaming.py --help

usage: mic_vad_streaming.py [-h] [-v VAD_AGGRESSIVENESS] [--nospinner]
[-w SAVEWAV] [-f FILE] -m MODEL [-s SCORER]
[-d DEVICE] [-r RATE]

Stream from microphone to DeepSpeech using VAD

optional arguments:
-h, --help show this help message and exit
-v VAD_AGGRESSIVENESS, --vad_aggressiveness VAD_AGGRESSIVENESS

Set aggressiveness of VAD: an integer between 0 and 3,
0 being the least aggressive about filtering out non-
speech, 3 the most aggressive. Default: 3

--nospinner Disable spinner
-w SAVEWAV, --savewav SAVEWAV

Save .wav files of utterences to given directory
-f FILE, --file FILE Read from .wav file instead of microphone
-m MODEL, --model MODEL

Path to the model (protocol buffer binary file, or
entire directory containing all standard-named files
for model)

-s SCORER, --scorer SCORER
(continues on next page)
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(continued from previous page)

Path to the external scorer file.
-d DEVICE, --device DEVICE

Device input index (Int) as listed by
pyaudio.PyAudio.get_device_info_by_index(). If not
provided, falls back to PyAudio.get_default_device().

-r RATE, --rate RATE Input device sample rate. Default: 16000. Your device
may require 44100.

17.5 DeepSegment

Some STT engines do not add punctuation. To solve this we use the DeepSegment model to segment sentences. This
model restores sentence punctuation by only using the unpunctuated text as the input. A more accurate model may
be able to determine punctuation based on the input text and timings of each word. For example, a greater pause
between two words may indicate a period. However, since improving STT was not the goal of this research, this was
not attempted. DeepSegment achieves a 52.64 absolute accuracy score (number of correctly segmented texts divided
by number of examples) on text with no punctuation while Spacy only reaches 11.76 and NLTK Punkt reaches 9.89.

17.6 Other Transcription Options

These are some of my notes on other potential speech-to-text libraries that I never fully integrated into lecture2notes.
This information may be outdated, but it is still useful to know about the other options that exist.

17.6.1 ESPnet

espnet/espnet is extremely promising but is very slow for some reason. The “ASR demo” can be found in the main
README.

The ESPnet commands to transcribe a WAV file are:

cd egs/librispeech/asr1
. ./path.sh
./../../../utils/recog_wav.sh --ngpu 1 --models librispeech.transformer.v1 example.wav

Installation can be completed with:

# OS setup
!cat /etc/os-release
!apt-get install -qq bc tree sox

# espnet setup
!git clone --depth 5 https://github.com/espnet/espnet
!pip install -q torch==1.1
!cd espnet; pip install -q -e .

# download pre-compiled warp-ctc and kaldi tools
!espnet/utils/download_from_google_drive.sh \

"https://drive.google.com/open?id=13Y4tSygc8WtqzvAVGK_vRV9GlV7TRC0w" espnet/tools␣
→˓tar.gz > /dev/null

(continues on next page)
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(continued from previous page)

!cd espnet/tools/warp-ctc/pytorch_binding && \
pip install -U dist/warpctc_pytorch-0.1.1-cp36-cp36m-linux_x86_64.whl

# make dummy activate
!mkdir -p espnet/tools/venv/bin && touch espnet/tools/venv/bin/activate
!echo "setup done."

17.6.2 wav2letter

Wav2letter is an “open source speech processing toolkit” written in C++ that is “built to facilitate research in end-to-end
models for speech recognition.” It contains pre-trained models, but the state-of-the-art models can not easily be used
with the separate inference scripts. They need to be converted. The inference tutorial is helpful, but it uses a smaller
“example model” that does not reach state-of-the-art accuracy.

It is recommended to use wav2letter with docker due to the complex dependency tree.

The simple_streaming_asr_example script can transcribe a WAV file when it is provided with the models.

The pre-trained SOTA models are in this folder and are from the “End-to-end ASR: from Supervised to Semi-
Supervised Learning with Modern Architectures” paper.

This issue is currently open and disscusses the lack of clear instructions about how to use the SOTA models for infer-
ence: Any example code using the new pretrained models

It may be possible to use the streaming_convnets research models for inference if they are converted using Stream-
ingTDSModelConverter.cpp, which has instruction in this README.
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CHAPTER

EIGHTEEN

PERSPECTIVE CROPPING & CORNER DETECTION

The corner crop transform algorithm has two steps. First, it will apply Ostu’s threshold and extract contours from an
edge map of the image. In the edge map, the algorithm attempts to find a large rectangle, which is the slide. This
method is ineffective if there are any gaps or obstructions in the outline around the slide. So, if it fails to find the slide,
the program will use the Hough Lines algorithm to find horizontal and vertical lines, then find the intersection points,
and finally cluster those points using KMeans.

The process this file executes is based on this jupyter notebook and this StackOverflow answer. The opencv package
provides most of the low-level functions. See the Corner Crop Transform API Documentation for details regarding the
functions.

Useful guides and tutorials to help understand the script:

• How To Build a Kick-Ass Mobile Document Scanner in Just 5 Minutes

• Credit card OCR with OpenCV and Python

• A Box detection algorithm for any image containing boxes.

• Sorting Contours using Python and OpenCV

• Horizontal Line detection with OpenCV

• Text skew correction with OpenCV and Python

18.1 Debug/Testing Mode

The file can be run as a script in order to try the image processing pipeline on several files, view the results, and tweak
the parameters as necessary to improve accuracy.

Recommended Command:

python corner_crop_transform.py folder ../presenter_slide/ --debug_mode --debug_gif --
→˓debug_path ../debug_imgs

The above command processes all files in the ../presenter_slide/ folder. The --debug_mode argument allows
the usage of --debug_gif and --debug_path. --debug_gif will save a gif of each step of the pipeline with a 1.4s
delay to --debug_path. --debug_imgs can also be enabled to save each step of the pipeline as its own image (in
higher quality than the GIF, the GIF only has 256 colors).

Using --debug_mode will output a file in the present working directory named debug_crop_error_log.txt with
the paths to all of the images that the pipeline thinks it failed with.
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Warning: There may be other images that the script failed to process correctly. The debug_crop_error_log.
txt file only contains the paths to images that did not meet the criteria to be perspective cropped. The reasoning
behind why they didn’t will likely lead to parameter tuning.

You can also process a single file using the file as a script with the file mode:

python corner_crop_transform.py file /path/to/image/file/0Q5IimX-AAc-img_067.jpg -d -di -
→˓dg

18.2 Example Images

18.2.1 Example of contours mode failing and falling back to hough_lines

Command used to create above image:

python corner_crop_transform.py file ../dataset/classifier-data/presenter_slide/
→˓IJquEYhiq_U-img_130_debug.gif -d -di -dg -dgo

Timeline of images (click image for larger view):

18.2.2 Example of contours mode succeeding

Command used to create above image:

python corner_crop_transform.py file ../dataset/classifier-data/presenter_slide/
→˓IJquEYhiq_U-img_068.jpg -d -di -dg -dgo

Timeline of images (click image for larger view):
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18.3 Script Help

Output of python corner_crop_transform.py --help:

usage: corner_crop_transform.py [-h] [-d] [-di] [-dg] [-dgo] [-p DEBUG_PATH]
[-l {DEBUG,INFO,WARNING,ERROR,CRITICAL}]
{file,folder} path

Perspective Crop to Rectangles (Slides)

positional arguments:
{file,folder} `file` mode will crop a single image and `folder` mode

will crop all the images in a given folder
path path to file or folder (depending on `mode`) to

process

optional arguments:
-h, --help show this help message and exit
-d, --debug_mode enable the usage of `--debug_imgs`, `--debug_gif`, and

`--debug_path`.
-di, --debug_imgs Save debug images (JPG of each step of the pipeline).

Requires `--debug_mode` to be enabled.
-dg, --debug_gif Save debug gif (GIF with 1.4s delay between each debug

image). Requires `--debug_mode` to be enabled.
-dgo, --debug_gif_optimize

Optimize the gif produced by enabling --debug_gif with
`gifsicle`.

-p DEBUG_PATH, --debug_path DEBUG_PATH
path to folder to store debug images (default:
'./debug_imgs')

-l {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --log {DEBUG,INFO,WARNING,ERROR,CRITICAL}
Set the logging level (default: 'Info').
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CHAPTER

NINETEEN

E2E API

19.1 Main Summarizer Class

class lecture2notes.end_to_end.summarizer_class.LectureSummarizer(params,
**kwargs)

determine_root_path()

run_all()

step_black_border_removal()

step_classify_slides()

step_cluster_slides()

step_extract_figures()

step_extract_frames()

step_perspective_crop()

step_slide_structure_analysis()

step_summarize()

step_transcribe_audio()

lecture2notes.end_to_end.summarizer_class.time_this(f )

19.2 Transcribe

19.2.1 transcribe_main

lecture2notes.end_to_end.transcribe.transcribe_main.caption_file_to_string(transcript_path,
re-
move_speakers=False)

Converts a .srt, .vtt, or .sbv file saved at transcript_path to a python string. Optionally removes
speaker entries by removing everything before “: ” in each subtitle cell.

lecture2notes.end_to_end.transcribe.transcribe_main.check_transcript(generated_transcript,
ground_truth_transcript)

Compares generated_transcript to ground_truth_transcript to check for accuracy using
spacy similarity measurement. Requires the “en_vectors_web_lg” model to use “real” word vectors.
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lecture2notes.end_to_end.transcribe.transcribe_main.chunk_by_silence(audio_path,
output_path,
si-
lence_thresh_offset=5,
min_silence_len=2000)

Split an audio file into chunks on areas of silence

Parameters

• audio_path (str) – path to a wave file

• output_path (str) – path to a folder where wave file chunks will be saved

• silence_thresh_offset (int, optional) – a value subtracted from the mean
dB volume of the file. Default is 5.

• min_silence_len (int, optional) – the length in milliseconds in which there
must be no sound in order to be marked as a splitting point. Default is 2000.

lecture2notes.end_to_end.transcribe.transcribe_main.chunk_by_speech(audio_path,
out-
put_path=None,
aggressive-
ness=1,
de-
sired_sample_rate=None)

Uses the python interface to the WebRTC Voice Activity Detector (VAD) API to create chunks of
audio that contain voice. The VAD that Google developed for the WebRTC project is reportedly one
of the best available, being fast, modern and free.

Parameters

• audio_path (str) – path to the audio file to process

• output_path (str, optional) – path to save the chunk files. if not specified then
no wave files will be written to disk and the raw pcm data will be returned. Defaults
to None.

• aggressiveness (int, optional) – determines how aggressive filtering out
non-speech is. must be an interger between 0 and 3. Defaults to 1.

• desired_sample_rate (int, optional) – the sample rate of the returned seg-
ments. the default is the same rate of the input audio file. Defaults to None.

Returns (segments, sample_rate, audio_length). See vad_segment_generator().

Return type tuple

lecture2notes.end_to_end.transcribe.transcribe_main.convert_deepspeech_json(transcript_json)
Convert a deepspeech json transcript from a letter-by-letter format to word-by-word.

Parameters transcript_json (dict or str) – The json format transcript as a dictio-
nary or a json string, which will be loaded using json.loads().

Returns The word-by-word transcript json.

Return type dict

lecture2notes.end_to_end.transcribe.transcribe_main.convert_samplerate(audio_path,
de-
sired_sample_rate)

Use SoX to resample wave files to 16 bits, 1 channel, and desired_sample_rate sample rate.
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Parameters

• audio_path (str) – path to wave file to process

• desired_sample_rate (int) – sample rate in hertz to convert the wave file to

Returns

(desired_sample_rate, output) where desired_sample_rate is the new sample
rate and output is the newly resampled pcm data

Return type tuple

lecture2notes.end_to_end.transcribe.transcribe_main.extract_audio(video_path,
output_path)

Extracts audio from video at video_path and saves it to output_path

lecture2notes.end_to_end.transcribe.transcribe_main.get_youtube_transcript(video_id,
out-
put_path,
use_youtube_dl=True)

Downloads the transcript for video_id and saves it to output_path

lecture2notes.end_to_end.transcribe.transcribe_main.load_deepspeech_model(model_dir,
beam_width=500,
lm_alpha=None,
lm_beta=None)

Load the deepspeech model from model_dir

Parameters

• model_dir (str) – path to folder containing the “.pbmm” and optionally “.scorer”
files

• beam_width (int, optional) – beam width for decoding. Default is 500.

• (float (lm_alpha) – alpha parameter of language model. Default is None.

• optional} – alpha parameter of language model. Default is None.

• lm_beta (float, optional) – beta parameter of langage model. Default is None.

Returns the loaded deepspeech model

Return type deepspeech.Model

lecture2notes.end_to_end.transcribe.transcribe_main.load_model(method, *args,
**kwargs)

lecture2notes.end_to_end.transcribe.transcribe_main.load_vosk_model(model_dir)

lecture2notes.end_to_end.transcribe.transcribe_main.load_wav2vec_model(model='facebook/wav2vec2-
base-960h',
tokenizer='facebook/wav2vec2-
base-960h',
**kwargs)

lecture2notes.end_to_end.transcribe.transcribe_main.metadata_to_json(candidate_transcript)
Helper function to convert metadata tokens from deepspeech to a dictionary.

lecture2notes.end_to_end.transcribe.transcribe_main.metadata_to_list(candidate_transcript)

lecture2notes.end_to_end.transcribe.transcribe_main.metadata_to_string(metadata)
Helper function to convert metadata tokens from deepspeech to a string.

19.2. Transcribe 79



Lecture2Notes, Release 1.0.0

lecture2notes.end_to_end.transcribe.transcribe_main.process_chunks(chunk_dir,
method='sphinx',
model_dir=None)

Performs transcription on every noise activity chunk (audio file) created by chunk_by_silence()
in a directory.

lecture2notes.end_to_end.transcribe.transcribe_main.process_segments(segments,
model, au-
dio_length='unknown',
method='deepspeech',
do_segment_sentences=True)

Transcribe a list of byte strings containing pcm data

Parameters

• segments (list) – list of byte strings containing pcm data (generated by
chunk_by_speech())

• model (deepspeech model) – a deepspeech model object or a path to a folder con-
taining the model files (see load_deepspeech_model()).

• audio_length (str, optional) – the length of the audio file if known (used for
logging statements) Default is “unknown”.

• method (str, optional) – The model to use to perform speech-to-text. Supports
‘deepspeech’ and ‘vosk’. Defaults to “deepspeech”.

• do_segment_sentences (bool, optional) – Find sentence boundaries using
segment_sentences(). Defaults to True.

Returns (full_transcript, full_transcript_json) The combined transcript of all the items in
segments as a string and as dictionary/json.

Return type tuple

lecture2notes.end_to_end.transcribe.transcribe_main.read_wave(path, de-
sired_sample_rate=None,
force=False)

Reads a “.wav” file and converts to desired_sample_rate with one channel.

Parameters

• path (str) – path to wave file to load

• desired_sample_rate (int, optional) – resample the loaded pcm data from
the wave file to this sample rate. Default is None, no resampling.

• force (bool, optional) – Force the audio to be converted even if it is detected
to meet the necessary criteria.

Returns (PCM audio data, sample rate, duration)

Return type tuple

lecture2notes.end_to_end.transcribe.transcribe_main.resolve_deepspeech_models(dir_name)
Resolve directory path for deepspeech models and fetch each of them.

Parameters dir_name (str) – Path to the directory containing pre-trained models

Returns a tuple containing each of the model files (pb, scorer)

Return type tuple
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lecture2notes.end_to_end.transcribe.transcribe_main.segment_sentences(text,
text_json=None,
do_capitalization=True)

Detect sentence boundaries without punctuation or capitalization.

Parameters

• text (str) – The string to segment by sentence.

• text_json (str or dict, optional) – If the detected sentence boundaries
should be applied to the JSON format of a transcript. Defaults to None.

• do_capitalization (bool, optiona) – If the first letter of each detected sen-
tence should be capitalized. Defaults to True.

Returns The punctuated (and optionally capitalized) string

Return type str

lecture2notes.end_to_end.transcribe.transcribe_main.transcribe_audio(audio_path,
method='sphinx',
**kwargs)

Transcribe audio using DeepSpeech, Vosk, or a method offered by
transcribe_audio_generic().

Parameters

• audio_path (str) – Path to the audio file to transcribe.

• method (str, optional) – The method to use for transcription. Defaults to
“sphinx”.

• **kwargs – Passed to the transcription function.

Returns (transcript_text, transcript_json)

Return type tuple

lecture2notes.end_to_end.transcribe.transcribe_main.transcribe_audio_deepspeech(audio_path_or_data,
model,
raw_audio_data=False,
json_num_transcripts=None,
**kwargs)

Transcribe an audio file or pcm data with the deepspeech model

Parameters

• audio_path_or_data (str or byte string) – a path to a wave file or a byte
string containing pcm data from a wave file. set raw_audio_data to True if pcm
data is used.

• model (deepspeech model or str) – a deepspeech model object or a path to a
folder containing the model files (see load_deepspeech_model())

• raw_audio_data (bool, optional) – must be True if audio_path_or_data is
raw pcm data. Defaults to False.

• json_num_transcripts (str, optional) – Specify this value to generate mul-
tiple transcipts in json format.

Returns (transcript_text, transcript_json) the transcribed audio file in string format and the
transcript in json

Return type tuple
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lecture2notes.end_to_end.transcribe.transcribe_main.transcribe_audio_generic(audio_path,
method='sphinx',
**kwargs)

Transcribe an audio file using CMU Sphinx or Google through the speech_recognition library

Parameters

• audio_path (str) – audio file path

• method (str, optional) – which service to use for transcription (“google” or
“sphinx”). Default is “sphinx”.

Returns the transcript of the audio file

Return type str

lecture2notes.end_to_end.transcribe.transcribe_main.transcribe_audio_vosk(audio_path_or_chunks,
model='../vosk_models',
chunks=False,
de-
sired_sample_rate=16000,
chunk_size=2000,
**kwargs)

Transcribe audio using a vosk model.

Parameters

• audio_path_or_chunks (str or generator) – Path to an audio file or a gener-
ator of chunks created by chunk_by_speech()

• model (str or vosk.Model, optional) – Path to the directory containing the
vosk models or loaded vosk.Model. Defaults to “../vosk_models”.

• chunks (bool, optional) – If the audio_path_or_chunks is chunks. Defaults to
False.

• desired_sample_rate (int, optional) – The sample rate that the model re-
quires to convert audio to. Defaults to 16000.

• chunk_size (int, optional) – The number of wave frames per loop. Amount
of audio data transcribed at a time. Defaults to 2000.

Returns (text_transcript, results_json) The transcript as a string and as JSON.

Return type tuple

lecture2notes.end_to_end.transcribe.transcribe_main.transcribe_audio_wav2vec(audio_path_or_chunks,
model=None,
chunks=False,
de-
sired_sample_rate=16000)

lecture2notes.end_to_end.transcribe.transcribe_main.write_to_file(transcript, tran-
script_save_file,
tran-
script_json=None,
tran-
script_json_save_path=None)

Write transcript to transcript_save_file and transcript_json to
transcript_json_save_path.
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lecture2notes.end_to_end.transcribe.transcribe_main.write_wave(path, audio,
sample_rate)

Writes a .wav file.

Takes path, PCM audio data, and sample rate.

19.2.2 webrtcvad_utils

class lecture2notes.end_to_end.transcribe.webrtcvad_utils.Frame(bytes, timestamp,
duration)

Represents a “frame” of audio data.

lecture2notes.end_to_end.transcribe.webrtcvad_utils.frame_generator(frame_duration_ms,
audio,
sample_rate)

Generates audio frames from PCM audio data.

Takes the desired frame duration in milliseconds, the PCM data, and the sample rate.

Yields Frames of the requested duration.

lecture2notes.end_to_end.transcribe.webrtcvad_utils.vad_collector(sample_rate,
frame_duration_ms,
padding_duration_ms,
vad, frames)

Filters out non-voiced audio frames.

Given a webrtcvad.Vad and a source of audio frames, yields only the voiced audio.

Uses a padded, sliding window algorithm over the audio frames. When more than 90% of the frames
in the window are voiced (as reported by the VAD), the collector triggers and begins yielding audio
frames. Then the collector waits until 90% of the frames in the window are unvoiced to detrigger.

The window is padded at the front and back to provide a small amount of silence or the begin-
nings/endings of speech around the voiced frames.

Parameters

• sample_rate – The audio sample rate, in Hz.

• frame_duration_ms – The frame duration in milliseconds.

• padding_duration_ms – The amount to pad the window, in milliseconds.

• vad – An instance of webrtcvad.Vad.

• frames – a source of audio frames (sequence or generator).

Returns A generator that yields PCM audio data.

Return type [generator]

lecture2notes.end_to_end.transcribe.webrtcvad_utils.vad_segment_generator(wavFile,
aggres-
sive-
ness,
de-
sired_sample_rate=None)

Generate VAD segments. Filters out non-voiced audio frames.

Parameters waveFile (str) – Path to input wav file to run VAD on.
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Returns

segments: a bytearray of multiple smaller audio frames (The longer audio split into
multiple smaller one’s)

sample_rate: Sample rate of the input audio file

audio_length: Duration of the input audio file

Return type [tuple]

19.2.3 mic_vad_streaming

class lecture2notes.end_to_end.transcribe.mic_vad_streaming.Audio(callback=None,
device=None, in-
put_rate=16000,
file=None)

Streams raw audio from microphone. Data is received in a separate thread, and stored in a buffer, to
be read from.

BLOCKS_PER_SECOND = 50

CHANNELS = 1

FORMAT = 8

RATE_PROCESS = 16000

destroy()

property frame_duration_ms

read()
Return a block of audio data, blocking if necessary.

read_resampled()
Return a block of audio data resampled to 16000hz, blocking if necessary.

resample(data, input_rate)
Microphone may not support our native processing sampling rate, so resample from input_rate
to RATE_PROCESS here for webrtcvad and deepspeech

Parameters
• data (binary) – Input audio stream
• input_rate (int) – Input audio rate to resample from

write_wav(filename, data)

class lecture2notes.end_to_end.transcribe.mic_vad_streaming.VADAudio(aggressiveness=3,
device=None,
in-
put_rate=None,
file=None)

Filter & segment audio with voice activity detection.

frame_generator()
Generator that yields all audio frames from microphone.

vad_collector(padding_ms=300, ratio=0.75, frames=None)
Generator that yields series of consecutive audio frames comprising each utterance, separated
by yielding a single None. Determines voice activity by ratio of frames in padding_ms. Uses a
buffer to include padding_ms prior to being triggered.
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Example: (frame, ..., frame, None, frame, ..., frame, None, ...)
|---utterance---| |---utterance---|

lecture2notes.end_to_end.transcribe.mic_vad_streaming.main(ARGS)

19.3 Cluster

class lecture2notes.end_to_end.cluster.ClusterFilesystem(slides_dir,
algorithm_name='kmeans',
num_centroids=20,
preference=None,
damping=0.5, max_iter=200,
model_path='model_best.ckpt')

Clusters images from a directory and saves them to disk in folders corresponding to each centroid.

extract_and_add_features(copy=True)
Extracts features from the images in slides_dir and saves feature vectors with super().add()

transfer_to_filesystem(copy=True, create_best_samples_folder=True)
Uses move_list from super() to take all images in directory slides_dir and save each cluster to a
subfolder in cluster_dir (directory in parent of slides_dir)

19.4 Corner Crop Transform

lecture2notes.end_to_end.corner_crop_transform.all_in_folder(path,
remove_original=False,
**kwargs)

Perform perspective cropping on every file in folder and return new paths. **kwargs is passed to
crop().

lecture2notes.end_to_end.corner_crop_transform.cluster_points(points, nclusters)
Perform KMeans clustering (using cv2.kmeans) on points, creating nclusters clusters. Returns
the centroids of the clusters.

lecture2notes.end_to_end.corner_crop_transform.contour_offset(cnt, offset)
Offset contour because of 5px border

lecture2notes.end_to_end.corner_crop_transform.crop(img_path, output_path=None,
mode='automatic',
debug_output_imgs=False,
save_debug_imgs=False,
create_debug_gif=False,
debug_gif_optimize=True,
debug_path='debug_imgs')

Main method to perspective crop an image to the slide.

Parameters

• img_path (str) – path to the image to load

• output_path (str, optional) – path to save the image. Defaults to
[filename]_cropped.[ext].

• mode (str, optional) – There are three modes available. Defaults to “automatic”.
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– contours: uses find_page_contours() to extract contours from an edge map
of the image. is ineffective if there are any gaps or obstructions in the outline
around the slide.

– hough_lines: uses hough_lines_corners() to get corners by looking for hor-
izontal and vertical lines, finding the intersection points, and clustering the inter-
section points.

– automatic: tries to use contours and falls back to hough_lines if contours
reports a failure.

• debug_output_imgs (bool or dict, optional) – if dictionary, modifies the
dictionary by adding (image file name, image data) pairs. if boolean and
True, creates a dictionary in the same way as if a dictionary was passed. Defaults to
False.

• save_debug_imgs (bool, optional) – uses write_debug_imgs() to save the
debug_output_imgs to disk. Requires debug_output_imgs to not be False. De-
faults to False.

• create_debug_gif (bool, optional) – create a gif of the debug images. Re-
quires debug_output_imgs to not be False. Defaults to False.

• debug_gif_optimize (bool, optional) – optimize the gif produced by en-
abling the create_debug_gif option using pygifsicle. Defaults to True.

• debug_path (str, optional) – location to save the debug images and debug gif.
Defaults to “debug_imgs”.

Returns path to cropped image and failed (True if no slide bounding box found, false oth-
erwise)

Return type [tuple]

lecture2notes.end_to_end.corner_crop_transform.edges_det(img, min_val, max_val,
debug_output_imgs=None)

Preprocessing (gray, thresh, filter, border) & Canny edge detection

Parameters

• img (image) – the image loaded using cv2.imread.

• min_val (int) – minimum value for cv2.Canny.

• max_val (int) – maximum value for cv2.Canny.

• debug_output_imgs (dict, optional) – modifies this dictionary by adding
(image file name, image data) pairs. Defaults to None.

Returns (dilated, total_border), dialted edges and total border width added

Return type [tuple]

lecture2notes.end_to_end.corner_crop_transform.find_intersection(line1, line2)
Find the intersection between line1 and line2.

lecture2notes.end_to_end.corner_crop_transform.find_page_contours(edges, img,
border_size=11,
min_area_mult=0.3,
de-
bug_output_imgs=None)

Find corner points of page contour

Parameters
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• edges (image) – edges extracted from img by edges_det().

• img (image) – the image loaded by cv2.imread.

• border_size (int, optional) – the size of the borders added by edges_det().
Defaults to 11.

• min_area_mult (float, optional) – the minimum percentage of the image area
that a contour’s area must be greater than to be considered as the slide. Defaults to
0.5.

Returns

contour is the set of coordinates of the corners sorted by
four_corners_sort() or returns None when no contour meets the criteria.

Return type [contour or NoneType]

lecture2notes.end_to_end.corner_crop_transform.four_corners_sort(pts)
Sort corners: top-left, bot-left, bot-right, top-right

lecture2notes.end_to_end.corner_crop_transform.horizontal_vertical_edges_det(img,
thresh_blurred,
de-
bug_output_imgs=None)

Detects horizontal and vertical edges and merges them together.

Parameters

• img (image) – the image as provided by cv2.imread

• thresh_blurred (image) – the image processed by thresholding. see
edges_det().

• debug_output_imgs (dict, optional) – modifies this dictionary by adding
(image file name, image data) pairs. Defaults to None.

Returns result image with a black background and white edges

Return type [image]

lecture2notes.end_to_end.corner_crop_transform.hough_lines_corners(img, edges_img,
min_line_length,
border_size=11,
de-
bug_output_imgs=None)

Uses cv2.HoughLinesP to find horizontal and vertical lines, finds the intersection points, and
finally clusters those points using KMeans.

Parameters

• img (image) – the image as loaded by cv2.imread.

• edges_img (image) – edges extracted from img by edges_det().

• min_line_length (int) – the shortest line length to consider as a valid line

• border_size (int, optional) – the size of the borders added by edges_det().
Defaults to 11.

• debug_output_imgs (dict, optional) – modifies this dictionary by adding
(image file name, image data) pairs. Defaults to None.
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Returns The corner coordinates as sorted by four_corners_sort().

Return type [list]

lecture2notes.end_to_end.corner_crop_transform.persp_transform(img, s_points)
Transform perspective of img from start points to target points.

lecture2notes.end_to_end.corner_crop_transform.remove_contours(edges, con-
tour_removal_threshold)

Remove contours from an edge map by deleting contours shorter than
contour_removal_threshold.

lecture2notes.end_to_end.corner_crop_transform.resize(img, height=800, allways=False)
Resize image to given height.

lecture2notes.end_to_end.corner_crop_transform.segment_lines(lines, delta)
Groups lines from cv2.HoughLinesP into vertical and horizontal bins.

Parameters

• lines (list) – the data returned from cv2.HoughLinesP

• delta (int) – how far away the x and y coordinates can differ before they’re marked
as different lines

Returns (h_lines, v_lines) the horizontal and vertical lines, respectively. each line in each
list is formatted as (x1, y1, x2, y2).

Return type [tuple]

lecture2notes.end_to_end.corner_crop_transform.straight_lines_in_contour(contour,
delta=100)

Returns True if contour contains lines that are horizontal or vertical. delta allows the lines to tilt
by a certain number of pixels. For instance, if a line is vertical, its y values can change by delta
pixels before it is considered not vertical.

lecture2notes.end_to_end.corner_crop_transform.write_debug_imgs(debug_output_imgs,
base_path='debug_imgs')

Saves images from debug_output_imgs to disk in base_path.

Parameters

• debug_output_imgs (dict) – dictionary in format {image file name: image data}

• base_path (str, optional) – the directory to store the debug images. Defaults
to “debug_imgs”.

19.5 Text Detection

lecture2notes.end_to_end.text_detection.get_text_bounding_boxes(image, net,
min_confidence=0.5,
resized_width=320,
re-
sized_height=320)

Determine the locations of text in an image.

Parameters

• image (np.array) – The image to be processed.

• net (cv2.dnn_Net) – The EAST model loaded with load_east().
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• min_confidence (float, optional) – Minimum probability required to inspect
a region. Defaults to 0.5.

• resized_width (int, optional) – Resized image width (should be multiple of
32). Defaults to 320.

• resized_height (int, optional) – Resized image height (should be multiple
of 32). Defaults to 320.

Returns The coordinates of bounding boxes containing text.

Return type list

lecture2notes.end_to_end.text_detection.load_east(east_path='frozen_east_text_detection.pb')
Load the pre-trained EAST model.

Parameters east_path (str, optional) – Path to the EAST model file. Defaults to
“frozen_east_text_detection.pb”.

19.6 Figure Detection

lecture2notes.end_to_end.figure_detection.add_figures_to_ssa(ssa, figures_path)
lecture2notes.end_to_end.figure_detection.all_in_folder(path, remove_original=False,

east='frozen_east_text_detection.pb',
do_text_check=True,
**kwargs)

Perform figure detection on every file in folder and return new paths. **kwargs is passed to
detect_figures().

lecture2notes.end_to_end.figure_detection.area_of_corner_box(box)

lecture2notes.end_to_end.figure_detection.area_of_overlapping_rectangles(a, b)
Find the overlapping area of two rectangles a and b. Inspired by https://stackoverflow.com/a/
27162334.

lecture2notes.end_to_end.figure_detection.convert_coords_to_corners(box)

lecture2notes.end_to_end.figure_detection.detect_color_image(image, thumb_size=40,
MSE_cutoff=22, ad-
just_color_bias=True)

Detect if an image contains color, is black and white, or is grayscale. Based on this StackOverflow
answer.

Parameters

• image (np.array) – Input image

• thumb_size (int, optional) – Resize image to this size to speed up calculation.
Defaults to 40.

• MSE_cutoff (int, optional) – A larger value requires more color for an image
to be labeled as “color”. Defaults to 22.

• adjust_color_bias (bool, optional) – Mean color bias adjustment, which im-
proves the prediction. Defaults to True.

Returns Either “grayscale”, “color”, “b&w” (black and white), or “unknown”.

Return type str
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lecture2notes.end_to_end.figure_detection.detect_figures(image_path,
output_path=None,
east='frozen_east_text_detection.pb',
text_area_overlap_threshold=0.32,
fig-
ure_max_area_percentage=0.6,
text_max_area_percentage=0.3,
large_box_detection=True,
do_color_check=True,
do_text_check=True,
entropy_check=2.5,
do_remove_subfigures=True,
do_rlsa=False)

Detect figures located in a slide.

Parameters

• image_path (str) – Path to the image to process.

• output_path (str, optional) – Path to save the figures. Defaults to
[filename]_figure_[index].[ext].

• east (str or cv2.dnn_Net, optional) – Path to the EAST model file or the
pre-trained EAST model loaded with load_east(). do_text_check must be true
for this option to take effect. Defaults to “frozen_east_text_detection.pb”.

• text_area_overlap_threshold (float, optional) – The percentage of the
figure that can contain text. If the area of the text in the figure is greater than this
value, the figure is discarded. do_text_check must be true for this option to take
effect. Defaults to 0.10.

• figure_max_area_percentage (float, optional) – The maximum percent-
age of the area of the original image that a figure can take up. If the figure uses more
area than original_image_area*figure_max_area_percentage then the fig-
ure will be discarded. Defaults to 0.70.

• text_max_area_percentage (float, optional) – The maximum percent-
age of the area of the original image that a block of text (as identified
by the EAST model) can take up. If the text block uses more area than
original_image_area*text_max_area_percentage then that text block will
be ignored. do_text_check must be true for this option to take effect. Defaults to
0.30.

• large_box_detection (bool, optional) – Detect edges and classify large rect-
angles as figures. This will ignore do_color_check and do_text_check. This is useful
for finding tables for example. Defaults to True.

• do_color_check (bool, optional) – Check that potential figures contain color.
This helps to remove large quantities of black and white text form the potential figure
list. Defaults to True.

• do_text_check (bool, optional) – Check that only
text_area_overlap_threshold of potential figures contains text. This is useful
to remove blocks of text that are mistakenly classified as figures. Checking for
text increases processing time so be careful if processing a large number of files.
Defaults to True.

• entropy_check (float, optional) – Check that the entropy of all potential fig-
ures is above this value. Figures with a shannon_entropy lower than this value will
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be removed. Set to False to disable this check. The shannon_entropy implemen-
tation is from skimage.measure.entropy. IMPORTANT: This check applies to
both the regular tests and large_box_detection, which most check do not apply
to. Defaults to 3.5.

• do_remove_subfigures (bool, optional) – Check that there are no over-
lapping figures. If an overlapping figure is detected, the smaller figure will be
deleted. This is useful to have enabled when using large_box_detection since
large_box_detection will commonly mistakenly detect subfigures. Defaults to True.

• do_rlsa (bool, optional) – Use RLSA (Run Length Smoothing Algorithm) in-
stead of dilation. Does not apply to large_box_detection. Defaults to False.

Returns (figures, output_paths) A list of figures extracted from the input slide image and
a list of paths to those figures on disk.

Return type tuple

19.7 Frames Extractor

lecture2notes.end_to_end.frames_extractor.extract_frames(input_video_path, quality,
output_path,
extract_every_x_seconds)

Extracts frames from input_video_path at quality level quality (best quality is 2) every ex-
tract_every_x_seconds seconds and saves them to output_path

19.8 Helpers

lecture2notes.end_to_end.helpers.copy_all(list_path_files, output_dir, move=False)
Copy (or move) every path in list_path_files if list or all files in a path if path to output_dir

lecture2notes.end_to_end.helpers.frame_number_filename_mapping(path, file-
names_only=True)

lecture2notes.end_to_end.helpers.frame_number_from_filename(filename)

lecture2notes.end_to_end.helpers.gen_unique_id(input_data, k)
Returns the first k characters of the sha1 of input_data

lecture2notes.end_to_end.helpers.make_dir_if_not_exist(path)
Makes directory path if it does not exist

19.9 Image Hash

lecture2notes.end_to_end.imghash.get_hash_func(hashmethod='phash')
Returns a hash function from the imagehash library.

Hash Methods:

• ahash: Average hash

• phash: Perceptual hash

• dhash: Difference hash
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• whash-haar: Haar wavelet hash

• whash-db4: Daubechies wavelet hash

lecture2notes.end_to_end.imghash.remove_duplicates(img_dir, images)
Remove duplicate frames/slides from disk.

Parameters

• img_dir (str) – path to directory containing image files

• images (dict) – dictionary in format {image hash: image filenames} provided by
sort_by_duplicates().

lecture2notes.end_to_end.imghash.sort_by_duplicates(img_dir, hash_func='phash')
Find duplicate images in a directory.

Parameters

• img_dir (str) – path to folder containing images to scan for duplicates

• hash_func (str, optional) – the hash function to use as given by
get_hash_func(). Defaults to “phash”.

Returns dictionary in format {image hash: image filenames}

Return type [dict]

19.10 OCR

lecture2notes.end_to_end.ocr.all_in_folder(path)
Perform OCR using pytesseract on every file in folder and return results

lecture2notes.end_to_end.ocr.write_to_file(results, save_file)
Write everything stored in results to file at path save_file. Used to write results from all_in_folder()
to save_file.

19.11 Segment Cluster

class lecture2notes.end_to_end.segment_cluster.SegmentCluster(slides_dir,
model_path='model_best.ckpt')

Iterates through frames in order and splits based on large visual differences (measured by the cosine
difference between the feature vectors from the slide classifier)

extract_and_add_features(gamma=1.3)
Extracts features from the images in slides_dir and saves feature vectors

transfer_to_filesystem(copy=True, create_best_samples_folder=True)
Takes all images in directory slides_dir and saves each cluster to a subfolder in cluster_dir
(directory in parent of slides_dir)
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19.12 SIFT Matcher

lecture2notes.end_to_end.sift_matcher.does_camera_move(old_frame, frame, gamma=10,
border_ratios=(10, 19),
bottom=False)

Detects camera movement between two frames by tracking features in the borders of the image. Only
the borders are used because the center of the image probably contains a slide. Thus, tracking features
of the slide is not robust since those features will disappear when the slide changes.

Parameters

• old_frame (np.array) – First frame/image as loaded with cv2.imread()

• frame (np.array) – Second frame/image as loaded with cv2.imread()

• gamma (int, optional) – The threshold pixel movement value. If the camera
moves more than this value, then there is assumed to be camera movement between
the two frames. Defaults to 10.

• border_ratios (tuple, optional) – The ratios of the height and width respec-
tively of the first frame to be searched for features. Only the borders are searched for
features. these values specify how much of the image should be counted as a border.
Defaults to (10, 19).

• bottom (bool, optional) – Whether to find features in the bottom border. This is
not recommended because ‘presenter_slide’ images may have the peoples’ heads at
the bottom, which will move and do not represent camera motion. Defaults to False.

Returns (total_movement > gamma, total_movement) If there is camera movement be-
tween the two frames and the total movement between the frames.

Return type tuple

lecture2notes.end_to_end.sift_matcher.does_camera_move_all_in_folder(folder_path)
Runs does_camera_move() on all the files in a folder and calculates statistics about camera move-
ment within those files.

Parameters folder_path (str) – Directory containing the files to be processed.

Returns (movement_detection_percentage, average_move_value, max_move_value) A
float representing the precentage of frames where movement was detected from
the previous frame. The average of the total_movement values returned from
does_camera_move(). The maximum of the the total_movement values returned
from does_camera_move().

Return type tuple

lecture2notes.end_to_end.sift_matcher.is_content_added(first, second,
first_area_modifier=0.7,
second_area_modifier=0.4,
gamma=0.09,
dilation_amount=22)

Detect if second contains more content than first and how much more content it adds. This
algorithm dilates both images and finds contours. It then computes the total area of those contours.
If gamma% more than the area of the first image’s contours is greater than the area of the second
image’s contours then it is assumed more content is added.

Parameters

• first (np.array) – Image loaded using cv2.imread() belonging to the ‘slide’
class
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• second (np.array) – Image loaded using cv2.imread() belonging to the ‘pre-
senter_slide’ class

• first_area_modifier (float, optional) – The maximum percent area of the
first image that a contour can take up before it is excluded. Defaults to 0.70.

• second_area_modifier (float, optional) – The maximum percent area of the
second image that a contour can take up before it is excluded. Images belonging to
the ‘presenter_slide’ class are more likely to have mistaken large contours. Defaults
to 0.40.

• gamma (float, optional) – The percentage increase in content area necessary for
second` to be classified as having more content than first. Defaults to 0.09.

• dilation_amount (int, optional) – How much the canny edge maps of each
both images first and second should be dilated. This helps to combine multiple
components of one object into a single contour. Defaults to 22.

Returns (content_is_added, amount_of_added_content) Boolean if second contains
more content than first and float describing the difference in content from first
to second. amount_of_added_content can be negative.

Return type tuple

lecture2notes.end_to_end.sift_matcher.match_features(slide_path, presenter_slide_path,
min_match_count=33,
min_area_percent=0.37,
do_motion_detection=True)

Match features between images in slide_path and presenter_slide_path. The images in slide_path are
the queries to the matching algorithm and the images in presenter_slide_path are the train/searched
images.

Parameters

• slide_path (str) – Path to the images classified as “slide” or any directory con-
taining query images.

• presenter_slide_path (str) – Path to the images classified as “presenter_slide”
or any directory containing train images.

• min_match_count (int, optional) – The minimum number of matches returned
by sift_flann_match() required for the image pair to be considered as containing
the same slide. Defaults to 33.

• min_area_percent (float, optional) – Percentage of the area of the train im-
age (images belonging to the ‘presenter_slide’ category) that a matched slide must
take up to be counted as a legitimate duplicate slide. This removes incorrect matches
that can result in crops to small portions of the train image. Defaults to 0.37.

• do_motion_detection (bool, optional) – Whether motion detection using
does_camera_move_all_in_folder() should be performed. If set to False
then it is assumed that there is movement since assuming no movement leaves
room for a lot of false positives. If no camera motion is detected and this op-
tion is enabled then all slides that are unique to the “presenter_slide” category
(they have no matches in the “slide” category) will automatically be cropped to
contain just the slide. They will be saved to the originating folder but with the
string defined by the variable OUTPUT_PATH_MODIFIER in their filename. Even if
does_camera_move_all_in_folder() detects no movement it is still possible
that movement is detected while running this function since a check is performed
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to make sure all slide bounding boxes found contain 80% overlapping area with all
previously found bounding boxes. Defaults to True.

Returns (non_unique_presenter_slides, transformed_image_paths)
non_unique_presenter_slides: The images in the “presenter_slide” cate-
gory that are not unique and should be deleted transformed_image_paths: The
paths to the cropped images if do_motion_detection was enabled and no motion was
detected.

Return type tuple

lecture2notes.end_to_end.sift_matcher.ransac_transform(sift_matches, kp1, kp2, img1,
img2, draw_matches=False)

Use data from sift_flann_match() to find the coordinates of img1 in img2. sift_matches, kp1,
kp2, img1, and img2 are all the outputs of meth:~sift_matcher.sift_flann_match. If draw_matches
is enabled then the features matches will be drawn and shown on the screen.

Returns The corner coordinates of the quadrilateral representing img1 within img2.

Return type np.array

lecture2notes.end_to_end.sift_matcher.sift_flann_match(query_image, train_image,
algorithm='orb',
num_features=1000)

Locate query_image within train_image using algorithm for feature detection/description and
FLANN (Fast Library for Approximate Nearest Neighbors) for matching. You can read more about
matching in the OpenCV “Feature Matching” documentation or about homography on the OpenCV
Python Tutorial “Feature Matching + Homography to find Objects”

Parameters

• query_image (np.array) – Image to find. Loading using cv2.imread().

• train_image (np.array) – Image to search. Loading using cv2.imread().

• algorithm (str, optional) – The feature detection/description algorithm. Can
be one of ORB, (ORB Class Reference) SIFT, (SIFT Class Reference) or FAST.
(FAST Class Reference) Defaults to “orb”.

• num_features (int, optional) – The maximum number of features to retain
when using ORB and SIFT. Does not take effect when using the FAST detection
algorithm. Setting to 0 for SIFT is a good starting point. The default for ORB is 500,
but it was increased to 1000 to improve accuracy. Defaults to 1000.

Returns (good, kp1, kp2, img1, img2) The good matches as per Lowe’s ratio test, the key
points from image 1, the key points from image 2, modified image 1, and modified
image 2.

Return type tuple
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19.13 Slide Classifier

lecture2notes.end_to_end.slide_classifier.classify_frames(frames_dir, do_move=True,
incorrect_threshold=0.6,
model_path='model_best.ckpt')

Classifies images in a directory using the slide classifier model.

Parameters

• frames_dir (str) – path to directory containing images to classify

• do_move (bool, optional) – move the images to their sorted folders instead of
copying them. Defaults to True.

• incorrect_threshold (float, optional) – the certainty value that the model
must be below for a prediction to be marked “probably incorrect”. Defaults to 0.60.

Returns (frames_sorted_dir, certainties, percent_wrong)

Return type [tuple]

19.14 Slide Structure Analysis

lecture2notes.end_to_end.slide_structure_analysis.all_in_folder(path,
do_rename=True,
**kwargs)

Perform structure analysis and OCR on every file in folder using analyze_structure().

Parameters

• path (str) – Directory containing images to process.

• do_rename (str, optional) – Rename files to just their frame number. Defaults
to True.

• **kwargs (dict, optional) – lecture2notes.end_to_end.
slide_structure_analysis.analyze_structure().

Returns (raw_texts, json_texts) A list of the raw text for each slide and a list of the json
structure analysis data for each slide.

Return type tuple

lecture2notes.end_to_end.slide_structure_analysis.analyze_structure(image,
to_json=None,
re-
turn_unstructured_text=True,
gamma=0.1,
beta=0.2,
orient='index',
ex-
tra_json=None)

Perform slide structure analysis.

Parameters

• image (np.array) – Image to be processed as loaded with cv2.imread().
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• to_json (str or bool, optional) – Path to write json output or a boolean to
return json data as a string. The default return value is a pd.DataFrame. Defaults to
None.

• return_unstructured_text (bool, optiona) – If the raw recognized text
should be returned in addition to the other return values.

• gamma (float, optional) – The percentage greater than or less than the average
stroke width that a text line must meet to be classified as bold/subtitle or small text
repsectively. Defaults to 0.1.

• beta (float, optional) – The percentage greater than or less than the average
height that a text line must meet to be classified as bold/subtitle or small text repsec-
tively. This is greater than gamma because height is on a larger scale than gamma.
Defaults to 0.2.

• orient (str, optional) – The format of the output json data if to_json is set.
The acceptable values can be found on the pandas.DataFrame.to_json documenta-
tion. Defaults to “index”.

• extra_json (dict, optional) – Additional keys and values to add to the json
output if to_json is enabled. Defaults to None.

Returns The default is to return a pd.DataFrame. However, setting to_json to a string will
instead write json data to to_json and return the path to the data. Setting to_json
to True will return the json data as a string. Setting return_unstructured_text
returns the previously described data and the raw recognized text as a tuple. Will return
None is no text is detected.

Return type pd.DataFrame or str or tuple or None

lecture2notes.end_to_end.slide_structure_analysis.identify_title(tesseract_df,
image,
left_start_maximum=0.77,
character_limit=3,
en-
abled_checks=None)

lecture2notes.end_to_end.slide_structure_analysis.stroke_width(image)
Determine the average stroke length in an image. Inspired by: https://stackoverflow.com/a/61914060.

Other Links:

• cv2.distanceTransform Documentation

• OpenCV Distance Transform Tutorial

• Sckit-Image “Finding local maxima”

• skimage.feature.peak_local_max

lecture2notes.end_to_end.slide_structure_analysis.write_to_file(raw_texts,
json_texts,
raw_save_file,
json_save_file)

Write the raw text in raw_texts to raw_save_file and the json data in json_texts to
json_save_file. Used to write results from all_in_folder() to disk.

Parameters

• raw_texts (list) – List of raw text outputs from analyze_structure().

• json_texts (list) – List of json ssa outputs from analyze_structure().
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• raw_save_file (str) – The path to save the raw text. A “.txt” file.

• json_save_file (str) – The path to save the json output. A “.json” file.

19.15 Spell Check

class lecture2notes.end_to_end.spell_check.SpellChecker(max_edit_distance_dictionary=2,
max_edit_distance_lookup=2,
prefix_length=7)

A spell checker.

check(input_term)
Checks an input string for spelling mistakes

Parameters input_term (str) – the sequence to check for spelling errors
Returns the best corrected string
Return type [str]

check_all(input_terms)
Spell check multiple sequences by calling check() for each item in input_terms.

Parameters input_terms (list) – a list of strings to be corrected with spell checking
Returns a list of corrected strings
Return type [list]

19.16 Summarization Approaches

lecture2notes.end_to_end.summarization_approaches.cluster(text,
coverage_percentage=0.7,
final_sort_by=None, clus-
ter_summarizer='extractive',
title_generation=False,
num_topics=10,
minibatch=False,
hf_inference_api=False, fea-
ture_extraction='neural_sbert',
**kwargs)

Summarize text to coverage_percentage length of the original document by extracting features
from the text, clustering based on those features, and finally summarizing each cluster. See the scikit-
learn documentation on clustering text for more information since several sections of this function
were borrowed from that example.

Notes

• **kwargs is passed to the feature extraction function, which is either
extract_features_bow() or extract_features_neural() depending on the
feature_extraction argument.

Parameters

• text (str) – a string of text to summarize

• coverage_percentage (float, optional) – The length of the summary as a
percentage of the original document. Defaults to 0.70.
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• final_sort_by (str, optional) – If cluster_summarizer is extractive and ti-
tle_generation is False then this argument is available. If specified, it will sort the
final cluster summaries by the specified string. Options are ["order", "rating"].
Defaults to None.

• cluster_summarizer (str, optional) – Which summarization method to use
to summarize each individual cluster. “Extractive” uses the same approach as
keyword_based_ext() but instead of using keywords from another document,
the keywords are calculated in the TfidfVectorizer or HashingVectorizer.
Each keyword is a feature in the document-term matrix, thus the number of words
to use is specified by the n_features parameter. Options are ["extractive",
"abstractive"]. Defaults to “extractive”.

• title_generation (bool, optional) – Option to generate titles for each cluster.
Can not be used if final_sort_by is set. Generates titles by summarizing the
text using BART finetuned on XSum (a dataset of news articles and one sentence
summaries aka headline generation) and forcing results to be from 1 to 10 words
long. Defaults to False.

• num_topics (int, optional) – The number of clusters to create. This should be
set to the number of topics discussed in the lecture if generating good titles is desired.
If separating into groups is not very important and a final summary is desired then
this parameter is not incredibly important, it just should not be set super low (3) or
super high (50) unless your document in super short or long. Defaults to 10.

• minibatch (bool, optional) – Two clustering algorithms are used: ordinary k-
means and its more scalable cousin minibatch k-means. Setting this to True will use
minibatch k-means with a batch size set to the number of clusters set in num_topics.
Defaults to False.

• hf_inference_api (bool, optional) – Use the huggingface inference API for
abstractive summarization. Defaults to False.

• feature_extraction (str, optional) – Specify how features should be ex-
tracted from the text.

– neural_hf: uses a huggingface/transformers pipeline with the roberta model by
default

– neural_sbert: special bert and roberta models fine-tuned to extract sentence
embeddings

∗ GitHub: https://github.com/UKPLab/sentence-transformers

∗ Paper: https://arxiv.org/abs/1908.10084

– spacy: uses spacy model. All other options use the small spacy model to split
the text into sentences since sentence detection does not improve with larger
models. However, if spacy is specified for feature_selection than the
en_core_web_lg model will be used to extract high-quality embeddings

– bow: bow = “bag of words”. this method is extremely fast since it is based on
word frequencies throughout the input text. The extract_features_bow()
function contains more details on recommended parameters that you can pass
to this function because of **kwargs.

Options are ["neural_hf", "neural_sbert", "spacy", "bow"] Default is
“neural_sbert”.

Raises Exception – If incorrect parameters are passed.
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Returns The summarized text as a normal string. Line breaks will be included if
title_generation is true.

Return type [str]

lecture2notes.end_to_end.summarization_approaches.compute_ranks(sigma, v_matrix)

lecture2notes.end_to_end.summarization_approaches.create_sumy_summarizer(algorithm,
lan-
guage='english')

lecture2notes.end_to_end.summarization_approaches.extract_features_bow(data, re-
turn_lsa_svd=False,
use_hashing=False,
use_idf=True,
n_features=10000,
lsa_num_components=False)

Extract features using a bag of words statistical word-frequency approach.

Parameters

• data (list) – List of sentences to extract features from

• return_lsa_svd (bool, optional) – Return the features and lsa_svd. See
“Returns” section below. Defaults to False.

• use_hashing (bool, optional) – Use a HashingVectorizer instead of a
CountVectorizer. Defaults to False. A HashingVectorizer should only be used
with large datasets. Large to the degree that you’ll probably never pass enough
data through this function to warrent the usage of a HashingVectorizer. Hash-
ingVectorizers use very little memory and are thus scalable to large datasets
because there is no need to store a vocabulary dictionary in memory. More
information can be found in the HashingVectorizer scikit-learn documentation.

• use_idf (bool, optional) – Option to use inverse document-frequency. De-
faults to True. In the case of use_hasing a TfidfTransformer will be ap-
pended in a pipeline after the HashingVectorizer. If not use_hashing then the
use_idf parameter of the TfidfVectorizer will be set to use_idf. This step is
important because, as explained by the scikit-learn documentation: “In a large
text corpus, some words will be very present (e.g. ‘the’, ‘a’, ‘is’ in English)
hence carrying very little meaningful information about the actual contents of
the document. If we were to feed the direct count data directly to a classifier
those very frequent terms would shadow the frequencies of rarer yet more inter-
esting terms. In order to re-weight the count features into floating point values
suitable for usage by a classifier it is very common to use the tf–idf transform.”

• n_features (int, optional) – Specifies the number of features/words to
use in the vocabulary (which are the rows of the document-term matrix). In
the case of the TfidfVectorizer the n_features acts as a maximum since the
max_df and min_df parameters choose words to add to the vocabulary (to use as
features) that occur within the bounds specified by these parameters. This value
should probably be lowered if use_hasing is set to True. Defaults to 10000.

• lsa_num_components (int, optional) – If set then preprocess the
data using latent semantic analysis to reduce the dimensionality to
lsa_num_components components. Defaults to False.

Returns list of features extracted and optionally the u, sigma, and v of the svd calculation
on the document-term matrix. only returns if return_lsa_svd set to True.

100 Chapter 19. E2E API

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.HashingVectorizer.html
https://scikit-learn.org/stable/modules/feature_extraction.html#tfidf-term-weighting


Lecture2Notes, Release 1.0.0

Return type [list or tuple]

lecture2notes.end_to_end.summarization_approaches.extract_features_neural_hf(sentences,
model='roberta-
base',
tokenizer='roberta-
base',
n_hidden=768,
squeeze=True,
**kwargs)

Extract features using a transformer model from the huggingface/transformers library

lecture2notes.end_to_end.summarization_approaches.extract_features_neural_sbert(sentences,
model='roberta-
base-
nli-
mean-
tokens')

Extract features using Sentence-BERT (SBERT) or SRoBERTa from the sentence-transformers li-
brary

lecture2notes.end_to_end.summarization_approaches.extract_features_spacy(sentences)

lecture2notes.end_to_end.summarization_approaches.full_sents(ocr_text, transcript_text,
remove_newlines=True,
cut_off=0.7)

lecture2notes.end_to_end.summarization_approaches.generic_abstractive(to_summarize,
summa-
rizer=None,
min_length=None,
max_length=None,
hf_inference_api=False,
*args,
**kwargs)

lecture2notes.end_to_end.summarization_approaches.generic_abstractive_hf_api(to_summarize,
summarizer='facebook/bart-
large-
cnn',
*args,
**kwargs)

lecture2notes.end_to_end.summarization_approaches.generic_extractive_sumy(text,
cover-
age_percentage=0.7,
algo-
rithm='text_rank',
lan-
guage='english')

lecture2notes.end_to_end.summarization_approaches.get_best_sentences(sentences,
count, rating,
*args,
**kwargs)

lecture2notes.end_to_end.summarization_approaches.get_complete_sentences(text, re-
turn_string=False)
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lecture2notes.end_to_end.summarization_approaches.get_sentences(text,
model='en_core_web_sm')

lecture2notes.end_to_end.summarization_approaches.initialize_abstractive_model(sum_model,
use_hf_pipeline=True,
*args,
**kwargs)

lecture2notes.end_to_end.summarization_approaches.keyword_based_ext(ocr_text,
transcript_text,
cover-
age_percentage=0.7)

lecture2notes.end_to_end.summarization_approaches.structured_joined_sum(ssa_path,
tran-
script_json_path,
frame_every_x=1,
end-
ing_char='.',
first_slide_frame_num=0,
to_json=False,
summa-
riza-
tion_method='abstractive',
max_summarize_len=50,
abs_summarizer='sshleifer/distilbart-
cnn-12-6',
ext_summarizer='text_rank',
hf_inference_api=False,
*args,
**kwargs)

Summarize slides by combining the Slide Structure Analysis (SSA) and transcript json to create a per
slide summary of the transcript. The content from the beginning of one slide to the start of the next
to the nearest ending_char is considered the transcript that belongs to that slide. The summarized
transcript content is organized in a dictionary where the slide titles are keys. This dictionary can be
returned as json or written to a json file.

Parameters

• ssa_path (str) – Path to the SSA JSON file.

• transcript_json_path (str) – Path to the transcript JSON file.

• frame_every_x (int, optional) – How often frames were extracted from
the video that the SSA was conducted on. This is used to convert frame numbers
to time (seconds). Defaults to 1.

• ending_char (str, optional) – The character that the transcript belong-
ing to each slide will be extended to. For instance, if the next slide appears
in the middle of a word, the transcript content will continue to be added to
the previous slide until the ending_char is reached. It is recommended to
use periods or a special end of sentence token if present. These can be gener-
ated with lecture2notes.end_to_end.transcribe.transcribe_main.
segment_sentences() Defaults to " " (nearest complete word).

• first_slide_frame_num (int, optional) – The frame number of the first
slide. Used to create a ‘preface’ (aka an introduction) if the first slide is not
immediately shown. Defaults to 0.
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• to_json (bool or str, optional) – If the output dictionary should be re-
turned as a JSON string. This can also be set to a path as a string and the JSON
data will be dumped to the file at that path. Defaults to False.

• summarization_method (str, optional) – The method to use to summa-
rize each slide’s transcript content. Options include “abstractive”, “extractive”,
or “none”. Defaults to “abstractive”.

• max_summarize_len (int, optional) – Text longer than this many tokens
will be summarized. Defaults to 50.

• abs_summarizer (str, optional) – The abstractive summarization
model to use if summarization_method is “abstractive”. Defaults to
“sshleifer/distilbart-cnn-12-6”.

• hf_inference_api (bool, optional) – Use the huggingface inference API
for abstractive summarization. Defaults to False.

• function (*args and **kwargs are passed to the summarization)
– generic_abstractive() or generic_extractive_sumy() depending on
summarization_method.

• either (which is) – generic_abstractive() or
generic_extractive_sumy() depending on summarization_method.

Returns A dictionary containing the slide titles as keys and the summarized transcript
content for each slide as values. A string will be returned when to_json is set. If
to_json is True (boolean) the JSON data formatted as a string will be returned. If
to_json is a path (string), then the JSON data will be dumped to the file specified
and the path to the file will be returned.

Return type dict or str

19.17 Transcript Downloader

class lecture2notes.end_to_end.transcript_downloader.TranscriptDownloader(youtube=None,
ytdl=True)

Download transcripts from YouTube using the YouTube API or youtube-dl.

static check_suffix(output_path)
Gets the file extension from output_path and verifies it is either “.srt”, “.vtt”, or it is not
present in output_path. The default is “.vtt”.

download(video_id, output_path)
Convenience function to download transcript with one call. If self.ytdl is False, calls
get_caption_id() and passes result to get_transcript(). If self.ytdl is True, calls
get_transcript_ytdl().

get_caption_id(video_id, lang='en')
Gets the caption id with language land for a video on YouTube with id video_id.

get_transcript_api(caption_id, output_path)
Downloads a caption track by id directly from the YouTube API.

Parameters

• caption_id (str) – the id of the caption track to download

• output_path (str) – path to save the captions. file extensions are parsed by
check_suffix()
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Returns the path where the transcript was saved (may not be the same as the
output_path parameter)

Return type [str]

get_transcript_ytdl(video_id, output_path)
Gets the transcript for video_id using youtube-dl and saves it to output_path. The exten-
sion from output_path will be the --sub-format that is passed to the youtube-dl com-
mand.

19.18 YouTube API

lecture2notes.end_to_end.youtube_api.init_youtube(oauth=False)
Initialize the YouTube API. If oauth then use the oauth client_secret.json located in the cur-
rent directory, otherwise use the YT_API_KEY environment variable.
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